I have come across a question about determining possible minimal polynomials for a rank one linear operator and I am wondering if I am using the correct proof method. I think that the facts needed to solve this problem come from the section on Nilpotent operators from Hoffman and Kunze's "Linear Algebra".
Question: Let $V$ be a vector space of dimension $n$ over the field $F$ and consider a linear operator $T$ on $V$ such that $\mathrm{rank}(T) = 1$. List all possible minimal polynomials for $T$.
Sketch of Proof: If $T$ is nilpotent then the minimal polynomial of $T$ is $x^k$ for some $k\leq n$. So suppose $T$ is not nilpotent, then we can argue that $T$ is diagonalizable based on the fact that $T$ must have one nonzero eigenvalue otherwise it would be nilpotent (I am leaving details of the proof of diagonalization but it is the observation that the characteristic space of the nonzero eigenvalue is the range of T and has dimension $1$). Thus the minimal polynomial of $T$ is just a linear term $x-c$.
Did I make a mistake assuming that $T$ can have only one nonzero eigenvalue?
Thanks for your help