Find the minimal polynomial of the $n$-dimensional matrix $(a_{ij})$ when the matrix elements $a_{ij}$ have the form $a_{ij} = u_i v_j.$
Let $A=uv^T$ where $u,v$ are column vectors.
Then rank$(A)\leq$rank$(u)\leq1.$ So kernal$(A)\geq n-1.$ That is, the geometric multiplicity $\geq n-1.$ According to Jordan decomposition theorem, the number of Jordan blocks w.r.t. $0\ \geq n-1.$ Therefore, the algebraic multiplicity of $0$ $\geq n-1.$
Suppose rank$(A)=1,$ how do I find the other eigenvalue?