0

Find the minimal polynomial of the $n$-dimensional matrix $(a_{ij})$ when the matrix elements $a_{ij}$ have the form $a_{ij} = u_i v_j.$


Let $A=uv^T$ where $u,v$ are column vectors.

Then rank$(A)\leq$rank$(u)\leq1.$ So kernal$(A)\geq n-1.$ That is, the geometric multiplicity $\geq n-1.$ According to Jordan decomposition theorem, the number of Jordan blocks w.r.t. $0\ \geq n-1.$ Therefore, the algebraic multiplicity of $0$ $\geq n-1.$

Suppose rank$(A)=1,$ how do I find the other eigenvalue?

lovelesswang
  • 688
  • 4
  • 12

1 Answers1

0

Hint: the vector $u$ is an eigenvector

Ben Grossmann
  • 225,327