TL;DR: So, in reality, while they do look different they actually do the exact same thing, thus outputting the same result. It's just that one is in regular coordinates and the other is in polar coordinates, that's all.
Let us consider the 2D case for simplicity.
Imagine we have a vector $\mathbf{r} = (x,y)$. We can represent this vector in polar coordinates as:
\begin{align}
\mathbf{r} = (||\mathbf{r}||\cos(\theta), ||\mathbf{r}||\sin(\theta))
\end{align}
Consider two vectors $\mathbf{r_1}$, $\mathbf{r_2}$ with components $x_1$, $x_2$, $y_1$, $y_2$, $\theta_1$, $\theta_2$, then
$\mathbf{r_1} \cdot \mathbf{r_2} = (x_1, y_1) \cdot (x_2, y_2) = x_1x_2 + y_1 y_2$
and (in polar)
\begin{align}
\mathbf{r_1} \cdot \mathbf{r_2} &= (||\mathbf{r_1}||\cos(\theta_1), ||\mathbf{r_1}||\sin(\theta_1)) \cdot (||\mathbf{r_2}||\cos(\theta_2), ||\mathbf{r_2}||\sin(\theta_2))\\
&= (||\mathbf{r_1}||)(||\mathbf{r_2}||) \cos(\theta_1) \cos(\theta_2) + (||\mathbf{r_1}||)(||\mathbf{r_2}||) \sin(\theta_1) \sin(\theta_2)\\
&= (||\mathbf{r_1}||)(||\mathbf{r_2}||) [\cos(\theta_1) \cos(\theta_2) + \sin(\theta_1) \sin(\theta_2)]
\end{align}
Using the trigonmetric identity $\cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + sin(\alpha) \sin(\beta)$ yields:
\begin{align}
\mathbf{r_1}
\cdot \mathbf{r_2} = (||\mathbf{r_1}||)(||\mathbf{r_2}||) \cos(\theta_1 - \theta_2)
\end{align}
The difference in angle between both vectors is $\Delta \theta = \theta_1 - \theta_2 $. Therefore,
\begin{align}
\mathbf{r_1} \cdot \mathbf{r_2} = x_1x_2 + y_1y_2 = (||\mathbf{r_1}||)(||\mathbf{r_2}||)\cos(\Delta\theta)
\end{align}.