The inequality asked is a consequence of
$$ \sum_{i,j} |x_i + x_j| \geq \sum_{i,j} |x_i-x_j|, \quad(\star) $$
a proof of which can be found below, or there (in a more general case).
Indeed, because of the convexity of $|\cdot|$ we have
$$
\forall (i,j),\qquad |x_i| \leq \frac{|x_i+x_j|+|x_i-x_j|}{2},
$$
so that, when summing over $i,j$ the inequality $(\star)$ yields
$$
n\sum_{i} |x_i| \leq \frac{1}{2}\sum_{i,j} |x_i+x_j| + \frac{1}{2}\sum_{i,j} |x_i-x_j| \leq \sum_{i,j} |x_i+x_j|.
$$
For the sake of completness, I give a proof of $(\star)$ in this particular case.
Step 1. notice that $|x_i+x_j|-|x_i-x_j| = 2\min(|x_i|,|x_j|)\times \begin{cases}1 & \text{if } x_i x_j > 0\\ -1 & \text{if } x_i x_j < 0\end{cases}$.
Step 2. let $A_t = \{i : x_i > t\}$ and $B_t = \{i : x_i < -t\}$. Using step 1, we have
\begin{align}
\frac{1}{2} \sum_{i,j} (|x_i + x_j| -|x_i-x_j|) = \sum_{i,j \in A_0} \min(|x_i|,|x_j|) &+\sum_{i,j \in B_0} \min(|x_i|,|x_j|)\\ & -2 \sum_{i\in A_0,j\in B_0} \min(|x_i|,|x_j|)
\end{align}
Step 3. We use the trick $\min(|x_i|,|x_j|) = \int_0^\infty 1_{t < |x_i|}1_{t < |x_j|}dt$ and the fact that $\sum_{i} 1_{t < x_i} = \sum_{i \in A_t} 1 = |A_t|$.
\begin{gather}
\sum_{i,j \in A_0} \min(|x_i|,|x_j|) = \int_0^\infty |A_t|\cdot |A_t|\,dt\\
\sum_{i,j \in B_0} \min(|x_i|,|x_j|) = \int_0^\infty |B_t|\cdot |B_t|\,dt\\
\sum_{i\in A_0, j\in B_0} \min(|x_i|,|x_j|) = \int_0^\infty |A_t|\cdot |B_t|\,dt\\
\end{gather}
Step 4. Putting things together, we proved that
$$
\frac{1}{2} \sum_{i,j} (|x_i + x_j| -|x_i-x_j|) = \int_0^\infty (|A_t|-|B_t|)^2\,dt \geq 0.
$$