Assume an ordering of the $x_i$ such that $x_1 \le x_2 \le \dots \le x_k < 0 \le x_{k+1} \le x_{k+2} \le \dots \le x_n$. Let's call $T_1 = \sum_{i=1}^k |x_i|$, $T_2 = \sum_{i=k+1}^n |x_i|$, and $T=\sum_i |x_i|=T_1+T_2$ so that $T, T_1, T_2 \ge 0$.
Since we only require a lower bound on the sum $\sum_{i \neq j} |x_i + x_j|$, we only consider $2\binom{k}{2} + 2\binom{n-k}{2}$ terms of the $2\binom{n}{2}$ total terms that the sum contains i.e. we only pick terms where both $x_i$ and $x_j$ have the same sign. This solves the inequality in many cases. For the other cases, we include the cross terms too later.
$$
\begin{align*}
\sum_{i \neq j} |x_i + x_j| &\ge \sum_{i=1}^k \sum_{j=1,j\neq i}^k |x_i+x_j| + \sum_{i=k+1}^n \sum_{j=k+1,j\neq i}^n |x_i+x_j|\\
&= \sum_{i=1}^k \sum_{j=1,j\neq i}^k (|x_i|+|x_j|) + \sum_{i=k+1}^n \sum_{j=k+1,j\neq i}^n (|x_i|+|x_j|)\\
&= \sum_{i=1}^k ((k-1)|x_i|+T_1-|x_i|) + \sum_{i=k+1}^n ((n-k-1)|x_i|+T_2-|x_i|)\\
&= \sum_{i=1}^k ((k-2)|x_i|+T_1) + \sum_{i=k+1}^n ((n-k-2)|x_i|+T_2)\\
&= ((k-2)T_1+kT_1) + ((n-k-2)T_2+(n-k)T_2)\\
&= 2\{(k-1)T_1 + (n-k-1)T_2\}\\
\end{align*}
$$
Now, the last expression is a function of $T_1$ and $T_2$. Since we require a lower bound in terms of $T=T_1+T_2$, we can get two equivalent expressions in terms of either $T_1$ and $T$ or in terms of $T_2$ and $T$. Thus,
$$\sum_{i \neq j} |x_i + x_j| \ge 2(2k-n)T_1+2(n-k-1)T$$
$$\sum_{i \neq j} |x_i + x_j| \ge 2(n-2k)T_2+2(k-1)T$$
Adding both, we get:
$$2\sum_{i \neq j} |x_i + x_j| \ge 2\left\{(2k-n)T_1+(n-2k)T_2+(n-2)T\right\}$$
$$\implies \sum_{i \neq j} |x_i + x_j| \ge (2k-n)(T_1-T_2)+(n-2)T \ge (n-2)\sum_i |x_i|$$
$$ \text{whenever,} \; (2k-n)(T_1-T_2) \ge 0$$
For the cases when the above inequality doesn't hold, we need to consider the cross terms too. Computing the cross terms alone:
$$
\begin{align*}
\sum_{i \neq j} |x_i + x_j| &\ge \sum_{i=1}^k \sum_{j=k+1}^n |x_i+x_j| + \sum_{i=k+1}^n \sum_{j=1}^k |x_i+x_j|\\
&\ge 2\sum_{i=1}^k \sum_{j=k+1}^n |x_i+x_j|\\
&\ge 2\sum_{i=1}^k \sum_{j=k+1}^n \max\{|x_i|-|x_j|,|x_j|-|x_i|\}\\
&\ge 2 \max\{(n-k)T_1-kT_2, kT_2-(n-k)T_1\}\\
\end{align*}
$$
Including the cross terms along with the terms from the previous case, we have:
$$
\begin{align*}
\sum_{i \neq j} |x_i + x_j| &\ge 2 \max\{(n-k)T_1-kT_2, kT_2-(n-k)T_1\} + 2\{(k-1)T_1 + (n-k-1)T_2\}\\
&\ge 2 \max\{(n-1)T_1+(n-2k-1)T_2, (2k-n-1)T_1+(n-1)T_2\} \; (*)\\
\end{align*}
$$
The $\max$ term can go one of two ways. Using the first term we get:
$$
\sum_{i \neq j} |x_i + x_j| \ge 2 \{(n-1)T_1+(n-2k-1)T_2\}
$$
We can again write the above in terms of either $T,T_1$ or $T,T_2$ giving two inequalities:
$$
\begin{align}
\sum_{i \neq j} |x_i+x_j| &\ge (n-2k-1)T+2kT_1\\
\sum_{i \neq j} |x_i+x_j| &\ge (n-1)T-2kT_2
\end{align}
$$
Summing the above two inequalities,
$$
\begin{align*}
\sum_{i \neq j} |x_i + x_j| &\ge (2n-2k-2)T+2k(T_1-T_2)\\
&\ge (n-2)T+(n-2k)T+2k(T_1-T_2)\\
&\ge (n-2)T \quad \text{for the case} \quad (2k-n) \le 0, (T_1-T_2) \ge 0\\
\end{align*}
$$
Similarly, for the other case, when $(2k-n) \ge 0, (T_1-T_2) \le 0$, we use the other $\max$ term from $(*)$ and follow the above steps routinely to prove the inequality.
Q.E.D