This is not a $100\%$ complete answer, but if no mistakes have been made, then the calculus problem can be boiled down to an algebraic one, after taking an elaborate detour into the complex world.
Shift the integration range down by $\dfrac\pi2$, then substitute $x=\arctan y=\arctan\dfrac{b-dz}{a-cz}$:
$$\begin{align*}
I &= \int_0^\pi \arctan \left(\frac{a \cos x + b \sin x}{c \cos x + d \sin x}\right) \, dx \\
&= \int_{-\tfrac\pi2}^\tfrac\pi2 \arctan \left(\frac{a\tan x-b}{c\tan x-d}\right) \, dx \\
&= \int_{-\infty}^\infty \frac{\arctan \left(\frac{ay-b}{cy-d}\right)}{1+y^2} \, dy \\
&= \int_{-\infty}^\infty \frac{(bc-ad) \arctan z}{a^2+b^2 - 2(ac+bd) z + \left(c^2+d^2\right) z^2} \, dz \tag{$*$}
\end{align*}$$
See Zacky's comment for the fine print of changing variables to $z$ in $(*)$. Provided the discriminant of the denominator $p(z)$ is negative, i.e.
$$4(ab+cd)^2 - 4(a^2+c^2)(b^2+d^2) = -4(bc-ad)^2 < 0$$
(agreeing with the conjectured condition), we can rewrite $I$ in terms of $J(a,b,c)$ as defined in this answer using residue calculus.
Split up the remaining integral in $(*)$ at $z=0$, substitute $z\to-z$ and recombine terms:
$$\begin{align*}
I &= \left\{\int_{-\infty}^0 + \int_0^\infty\right\} \frac{(bc-ad) \arctan z}{p(z)} \, dz \\
&= (bc-ad) \int_0^\infty \left(\frac1{p_-(z)}-\frac1{p_+(z)}\right) \arctan z \, dz \\
&= 4 (bc-ad) (ac+bd) J(r,s,t)
\end{align*}$$
where the $\star$ in $p_\star(z)$ denotes the sign of the coefficient $z^1$ in $p(z)$, and
$$\begin{cases}
r=\left(a^2+b^2\right)^2 \\
s= -2 (a (c+d) - b (c-d)) (a (c-d) + b (c+d)) \\
t = \left(c^2+d^2\right)^2
\end{cases}$$
Let $\mathcal A$ be the monstrous argument to $\arctan$ in $J(r,s,t)$ (see spoiler below). With Mathematica's help in factorizing some polynomials in $a,b,c,d$, I've managed to symbolically simplify some pieces, starting with
$$J(r,s,t) = \frac\pi{8 \left\lvert (ac+bd)(ad-bc) \right\rvert} \arctan \mathcal A$$
so that (at least up to sign) it would appear that
$$I = \frac\pi2 \arctan \mathcal A = \pi \arctan \frac{\mathcal A}{1 + \sqrt{1+\mathcal A^2}}$$
It remains to be shown that the arguments to the latter and titular $\arctan$s are a match.
$$\begin{align*} \mathcal A &= \frac{-2\alpha\delta + \beta\left(\sqrt{\gamma+2\alpha i} + \sqrt{\gamma-2\alpha i}\right)}{\beta\delta + 2\alpha\left(\sqrt{\gamma+2\alpha i} + \sqrt{\gamma-2\alpha i}\right)} \\[2ex] \alpha &= \left\lvert(ad-bc)(ad+bc)\right\rvert \\ \beta &= \left(a^2-b^2\right) \left(c^2-d^2\right)+\left(a^2+b^2\right)^2+4 a b c d \\ \gamma &= (a c - b c + a d + b d) (a c + b c - a d + b d) \\ \delta &= a^2+b^2-c^2-d^2 \end{align*}$$