Sketch of solution
Integrate by parts, substitute $x\mapsto-x$ in the integral over $[-1,0]$, then recombine:
$$\begin{align*}
I &= \int_{-1}^1 \frac{1}{\sqrt{1-x^2}} \arctan\frac{11-6x}{4\sqrt{21}} \, dx \\
&= \frac\pi2 \arctan \frac{88\sqrt{21}}{251} + 24\sqrt{21} \int_{-1}^1 \frac{\arcsin x}{36x^2-132x+457} \, dx \\
&= \frac\pi2 \arctan \frac{88\sqrt{21}}{251} + 6336\sqrt{21} \int_0^1 \frac{x \arcsin x}{1296x^4+15480x^2+208849} \, dx
\end{align*}$$
where the constant term is simplified with $\arctan u + \arctan v = \arctan \dfrac{u+v}{1-uv}$ $(*)$.
The remaining integral can be evaluated with complex analysis; see my answer here to another definite integral with the same basic structure,
$$\begin{align*}
I(\alpha, \beta, \gamma) & := \int_0^1 \frac{x \arcsin x}{\alpha x^4+\beta x^2+\gamma} \, dx \\
&= \int_0^\infty \frac{y \arctan y}{ay^4+by^2+c} \, dy & x=\frac y{\sqrt{1+y^2}} \\
J(a,b,c) & := \frac12 \int_{-\infty}^\infty \frac{y \arctan y}{ay^4+by^2+c} \, dy
\end{align*}$$
with $(a,b,c)=(\alpha+\beta+\gamma, \beta+2\gamma, \gamma)$, each parameter belonging to $\Bbb N$ such that $\beta^2-4\alpha\gamma<0$.
Evaluating $J(a,b,c)$ and $I(\alpha,\beta,\gamma)$
We introduce the function
$$f(z) = \frac{z \arctan z}{az^4+bz^2+c} = -\frac i2 \frac z{az^4+bz^2+c} \left(\log\left\lvert\frac{i-z}{i+z}\right\rvert + i \arg\left(\frac{i-z}{i+z}\right)\right),$$
to be integrated along the contour $C$ below, bypassing the branch cut taken along the positive imaginary axis:

$f(z)$ has two simple poles in the upper-half plane $\Im z>0$,
$$\omega_\pm = \pm \sqrt{\frac{-b \pm \sqrt{b^2-4ac}}{2a}}$$
where $\omega_\pm$ is the pole with $\pm$ real part. The residues are
$$\begin{align*}
\underset{\omega_+}{\operatorname{Res}} f(z) &= \color{red}+ \frac1{2\sqrt{b^2-4ac}} \arctan \omega_+ \\
\underset{\omega_-}{\operatorname{Res}} f(z) &= \color{red}- \frac1{2\sqrt{b^2-4ac}} \arctan \omega_-
\end{align*}$$
so by the residue theorem,
$$\begin{align*}
\oint_C f(z) \, dz &= i2\pi \sum_{\omega_\pm} \operatorname{Res} f(z) \\
&= \frac{i\pi}{\sqrt{b^2-4ac}} \left(\arctan \omega_+ - \arctan \omega_-\right) \\
&= \frac{i\pi}{\sqrt{b^2-4ac}} \arctan \frac{\omega_+ - \omega_-}{1 + \omega_+\omega_-} \\
&= \frac{i\pi}{\sqrt{b^2-4ac}} \arctan \frac{\sqrt{-b-\sqrt{b^2-4ac}} + \sqrt{-b+\sqrt{b^2-4ac}}}{\sqrt2 \left(\sqrt a - \sqrt c\right)}
\end{align*}$$
In the limit, the integrals along the paths to either side of the cut together contribute
$$\begin{align*}
\int_{\lambda_1\cup\lambda_2} f(z) \, dz &\to \pi \int_1^\infty \frac{t}{at^4 - bt^2 + c} \, dt \\
&= \frac\pi{\sqrt{b^2-4ac}} \left(\operatorname{artanh}\frac{b-2c}{\sqrt{b^2-4ac}} - \operatorname{artanh}\frac b{\sqrt{b^2-4ac}}\right) \\
&= \frac\pi{\sqrt{b^2-4ac}} \operatorname{artanh} \frac{\sqrt{b^2-4ac}}{2a-b} \\
&= \frac{i\pi}{\sqrt{b^2-4ac}} \arctan \frac{\sqrt{-b^2+4ac}}{2a-b}
\end{align*}$$
using the hyperbolic version of $(*)$, $\operatorname{artanh}u+\operatorname{artanh}v=\operatorname{artanh}\dfrac{u+v}{1\color{red}+uv}$, as well as $\operatorname{artanh}(iz)=i\arctan z$.
Hence
$$\begin{align*}
J(a,b,c) &= \frac{i\pi}{2\sqrt{b^2-4ac}} \left(\arctan \frac{\sqrt{-b-\sqrt{b^2-4ac}} + \sqrt{-b+\sqrt{b^2-4ac}}}{\sqrt2 \left(\sqrt a - \sqrt c\right)} - \arctan \frac{\sqrt{-b^2+4ac}}{2a-b}\right) \\
&= \frac{i\pi}{2\sqrt{b^2-4ac}} \arctan \frac{\frac{\sqrt{-b-\sqrt{b^2-4ac}}+\sqrt{-b+\sqrt{b^2-4ac}}}{\sqrt2\left(\sqrt a-\sqrt c\right)} - \frac{\sqrt{-b^2+4ac}}{2a-b}}{1 + \frac{\sqrt{-b-\sqrt{b^2-4ac}}+\sqrt{-b+\sqrt{b^2-4ac}}}{\sqrt2\left(\sqrt a-\sqrt c\right)}\cdot\frac{\sqrt{-b^2+4ac}}{2a-b}}
\end{align*}$$
$$\implies \bbox[#faa, 2pt, border:2pt solid black]{I(\alpha,\beta,\gamma) = \frac{i\pi}{2\sqrt{\beta^2-4\alpha\gamma}} \arctan \frac{\frac{\sqrt{-\beta-2\gamma-\sqrt{\beta^2-4\alpha\gamma}}+\sqrt{-\beta-2\gamma+\sqrt{\beta^2-4\alpha\gamma}}}{\sqrt2\left(\sqrt{\alpha+\beta+\gamma}-\sqrt\gamma\right)} - \frac{\sqrt{-\beta^2+4\alpha\gamma}}{2\alpha+\beta}}{1 + \frac{\sqrt{-\beta-2\gamma-\sqrt{\beta^2-4\alpha\gamma}}+\sqrt{-\beta-2\gamma+\sqrt{\beta^2-4\alpha\gamma}}}{\sqrt2\left(\sqrt{\alpha+\beta+\gamma}-\sqrt \gamma\right)}\cdot\frac{\sqrt{-\beta^2+4\alpha\gamma}}{2\alpha+\beta}}}$$
(Is there a simpler expression for this?)
$$\begin{align*}
\implies I(1296, 15480, 208849) &= \frac\pi{12672\sqrt{21}} \arctan\frac{88352\sqrt{21} - 225625\sqrt3}{424871}
\end{align*}$$
$$\begin{align*}
\implies I &= \frac\pi2 \left(\arctan \frac{88\sqrt{21}}{251} + \arctan \frac{88352\sqrt{21}-225625\sqrt3}{424871}\right) \\
&\stackrel{!}= \frac\pi2 \arctan \sqrt3 = \boxed{\frac{\pi^2}6}
\end{align*}$$