$\DeclareMathOperator ZZ$Series solutions to partly invert $e^x(x^2+a)$ and $e^xx(x+a)$ exist when more general quadratic-exponential equations are reduced. Using the reverse Bessel polynomials $p_n(x)$:
$$e^xx(x+a)=b\implies x=-\sum_{n=1}^\infty\frac{(-2 ba^{-2})^n}{nn!}p_n\left(\frac{a n}2\right)\tag1$$
The inverse Z transform, like here, lets us find an integral representation by looking at the generating function:
$$\begin{align}\Z_x(p_n(x))=\sum_{n=0}^\infty\frac{p_n(x)}{n!}w^n=e^{(1-\sqrt{1-2w})x}\\ \implies p_n(x)=\Z^{-1}\left(e^{(1-\sqrt{1-2w})x} \right)=\frac{n!}{2\pi i }\oint\exp((1-\sqrt{1-2w})x)w^{-n-1}dw\\\mathop=^?\frac{n!}{2\pi}\int_{-\pi}^\pi \exp\left(\left(1-\sqrt{1-2e^{it}})x-i t n\right)\right)dt\tag2\end{align}$$
This would allow an integral representation of $(1)$, but $(2)$ does not numerically match $p_n(x)$.
What is an actual integral representation for $p_n(x)$?