General
Question: How to solve $a \cdot x^{2} + b \cdot x + c + \exp\left( d \cdot x + e \right) = 0$ for $x$ where $x \in \mathbb{C} \cup \left\{ \hat{\infty} \right\} \wedge \left\{ a,\, b,\, c,\, d,\, e \right\} \in \mathbb{C}$ (note: here $e$ is not euler's constant)?
Backgrund: When I sometimes calculate with ODEs, I sometimes come across equations of this form. So I'm wondering what a general solution to this would look like?
My Trys
Since I've often encountered such equations, I've tried a few things accordingly. I'll just name the best (for non-trivial stuff):
If $a = 0$
$$ \begin{align*} 0 \cdot x^{2} + b \cdot x + c + \exp\left( d \cdot x + e \right) &= 0\\ b \cdot x + c + \exp\left( d \cdot x + e \right) &= 0\\ \exp\left( d \cdot x + e \right) &= -c - x \cdot b\\ \end{align*} $$ $$ \begin{align*} -x \cdot b - c &= \exp\left( e - \frac{c \cdot d}{b} + x \cdot d + \frac{c \cdot d}{b} \right)\\ -x \cdot b - c &= \exp\left( e - \frac{c \cdot d}{b} + x \cdot d + \frac{c \cdot d}{b} \right)\\ -x \cdot b - c &= \exp\left( e - \frac{c \cdot d}{b} \right) \cdot \exp\left( x \cdot d + \frac{c \cdot d}{b} \right)\\ \end{align*} $$ $$ \begin{align*} -x \cdot b \cdot \exp\left( -x \cdot d - \frac{c \cdot d}{b} \right) - c \cdot \exp\left( -x \cdot d - \frac{c \cdot d}{b} \right) &= \exp\left( e - \frac{c \cdot d}{b} \right)\\ -x \cdot d \cdot \exp\left( -x \cdot d - \frac{c \cdot d}{b} \right) - \frac{c \cdot d}{b} \cdot \exp\left( -x \cdot d - \frac{c \cdot d}{b} \right) &= \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right)\\ \left( -x \cdot d - \frac{c \cdot d}{b} \right) \cdot \exp\left( -x \cdot d - \frac{c \cdot d}{b} \right) &= \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right)\\ \end{align*} $$ $$ \begin{align*} -x_{k} \cdot d - \frac{c \cdot d}{b} &= W_{k}\left( \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right) \right)\\ x_{k} + \frac{c}{b} &= -\frac{1}{d} \cdot W_{k}\left( \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right) \right)\\ x_{k} &= -\frac{1}{d} \cdot W_{k}\left( \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right) \right) - \frac{c}{b}\\ \end{align*} $$
$$\fbox{$x_{k} = -\frac{1}{d} \cdot W_{k}\left( \frac{d}{b} \cdot \exp\left( e - \frac{c \cdot d}{b} \right) \right) - \frac{c}{b}$}$$
Where $W_{k}$ is the Lambert W Function...
If $a \ne 0$
Completing ... $$ \begin{align*} a \cdot x^{2} + b \cdot x + c + \exp\left( d \cdot x + e \right) &= 0\\ a \cdot x^{2} + b \cdot x + \exp\left( d \cdot x + e \right) &= -c\\ a \cdot x^{2} + b \cdot x + \frac{b^{2}}{4} + \exp\left( d \cdot x + e \right) &= -c + \frac{b^{2}}{4}\\ a \cdot x^{2} + b \cdot x + \frac{b^{2}}{4} + \exp\left( d \cdot x + e \right) &= -c + \frac{b^{2}}{4}\\ x^{2} + \frac{b}{a} \cdot x + \frac{b^{2}}{4 \cdot a^{2}} + \frac{1}{a} \cdot \exp\left( d \cdot x + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}}\\ \left(x + \frac{b}{2 \cdot a} \right)^{2} + \frac{1}{a} \cdot \exp\left( d \cdot x + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}}\\ \end{align*} $$ Fail: I can't think of anything useful to add.
Substitution + Compliting ... $$ \begin{align*} \left(\underbrace{x + \frac{b}{2 \cdot a}}_{= u} \right)^{2} + \frac{1}{a} \cdot \exp\left( d \cdot x + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}}\\ u^{2} + \frac{1}{a} \cdot \exp\left( d \cdot \left( u - \frac{b}{2 \cdot a} \right) + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}}\\ u^{2} + \frac{1}{a} \cdot \exp\left( d \cdot u - \frac{d \cdot b}{2 \cdot a} + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}}\\ \frac{1}{a} \cdot \exp\left( d \cdot u - \frac{d \cdot b}{2 \cdot a} + e \right) &= -\frac{c}{a} + \frac{b^{2}}{4 \cdot a^{2}} - u^{2}\\ \exp\left( d \cdot u - \frac{d \cdot b}{2 \cdot a} + e \right) &= -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2}\\ \exp\left( d \cdot u + f - \frac{d \cdot b}{2 \cdot a} + e - f \right) &= -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2}\\ \exp\left( d \cdot u + f \right) \cdot \exp\left( -\frac{d \cdot b}{2 \cdot a} + e - f \right) &= -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2}\\ \exp\left( -\frac{d \cdot b}{2 \cdot a} + e - f \right) &= \left( -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2} \right) \cdot \exp\left( -d \cdot u - f \right)\\ \end{align*} $$ Fail: Nothing to simplify...
Despair $$ \begin{align*} \exp\left( -\frac{d \cdot b}{2 \cdot a} + e - f \right) &= \left( -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2} \right) \cdot \exp\left( -d \cdot u - f \right)\\ -\frac{d \cdot b}{2 \cdot a} + e - f &= \ln\left( \left( -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2} \right) \cdot \exp\left( -d \cdot u - f \right) \right)\\ -\frac{d \cdot b}{2 \cdot a} + e - f &= \ln\left( -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2} \right) + \ln\left( \exp\left( -d \cdot u - f \right) \right)\\ -\frac{d \cdot b}{2 \cdot a} + e - f &= \ln\left( -c + \frac{b^{2}}{4 \cdot a} - a \cdot u^{2} \right) - d \cdot u - f \\ \end{align*} $$
So there might be a solution in terms of Wright Lambert W functions...