$\def\B{\operatorname B}$ In
A solution uses Bell polynomials $\B_n(x)$
$$e^{ae^{bz}}=z=1+\frac1b\sum_{n=1}^\infty \frac{(ae^b)^n}{nn!}\B_n(b n)=\frac1b\sum_{n=1}^\infty\frac{(b e^a)^n}{n!}\B_{n-1}(an)\tag1$$
A contour integral representation is:
$$\B_n(x)=\frac{n!}{2\pi i}\oint\frac{e^{x(e^t-1)}}{t^{n+1}}dt\tag2$$
interchanging sum and integral gives: $$e^{ae^{bz}}=z\mathop=^?1+\frac i{2\pi b}\oint\ln\left(1-\frac{ae^{be^t}}t\right)dt\mathop=^?\frac i{2\pi b}\oint\ln\left(1-\frac{be^{ae^t}}t\right)dt$$
I have little experience with contour integration, but trying $a=b=-\frac12$ and $\oint\leftrightarrow\int_{\frac12-i\infty}^{\frac12+i\infty}$ gives a different result than the sum. Likely, the contour used is wrong or one cannot switch the sum and integral without converting to an ordinary integral.
How can $(2)$ be used in $(1)$ to find a similar contour integral solution to $e^{ae^{bz}}=z$?