Let the bijection $T:\, \mathbb R^n\longrightarrow\mathbb R^n,\ n\geq2$ satisfy \begin{align} T(u+v)=T(u)+T(v),\ \forall u,v\in\mathbb R^n\tag1 \end{align} and \begin{align} T\big(\langle u\rangle\big)=\big<T(u) \big>,\ \forall u\in\mathbb R^n,\tag2 \end{align} this means \begin{align} \forall u\in\mathbb R^n,\ \forall\lambda\in\mathbb R,\ \exists\,\mu=\mu(\lambda)\in\mathbb R:\ T(\lambda u)=\mu(\lambda,u)T(u),\tag3 \end{align} Moreover, we assume that \begin{align} T(\lambda u)\,=\lambda T(u),\ \forall\lambda\in\mathbb Q. \tag4 \end{align}
Then is $T$ $\mathbb R-$linear ?
My attempt :
Let us define the maps as follow
\begin{align}
\mathbb R\,\overset{f}{\longrightarrow}\,\langle u\rangle\,\overset{T}{\longrightarrow}\,\big< T(u)\big>\,\overset{g}{\longrightarrow}\,\mathbb R
\end{align}
given by
\begin{align}
\lambda\,&\longmapsto\,f(\lambda)=\lambda u
\\ \lambda u\,&\longmapsto\,T(\lambda u)=\mu T(u)
\\ \mu T(u)\,&\longmapsto\,g\big(\mu T(u)\big)=\mu.
\end{align}
From the additivity of $T$,we can show that
\begin{align}
\mu(\lambda+\varepsilon,u)&=\,\mu(\lambda,u)+\mu(\varepsilon,u)
\end{align}
In other hand, we have
\begin{align}
\mu(\lambda\varepsilon,u)T(u) \,=\,T(\lambda\varepsilon u)\,&=\,\mu(\lambda,\varepsilon u)T(\varepsilon u)
\\ &=\,\mu(\lambda,\varepsilon u)\mu(\varepsilon,u)T(u)
\end{align}
Thus
\begin{align}
\mu(\lambda\varepsilon,u)\,=\,\mu(\lambda,\varepsilon u)\mu(\varepsilon,u)
\end{align}
I want to show that the function $\mu(\cdot,u)$ is multiplication preserving, and in order to get that, the first thing I think to show is
\begin{align}
\mu(\lambda,\varepsilon u)\,=\,\mu(\lambda,u).\tag5
\end{align}
Then, we can use this fact to show that $\mu(\epsilon^2,u)=\mu(\epsilon,u)^2$, this will implies $\mu(\lambda,u)>0,\ \forall \lambda >0$. Hence
$$\mu(\lambda,u)-\mu(\varepsilon,u)\,=\,\mu(\lambda-\varepsilon,u)\,>\,0,\ \forall \lambda >\varepsilon. $$
Thus $\mu$ is strictly increasing.
Let $\lambda\in\mathbb R$, suppose $\lambda <\mu(\lambda,u)$. By density of $\mathbb R$, there exists $q\in\mathbb Q$ such that $\lambda<q<\mu(\lambda,u)$. Since $\lambda<q$, we have $\mu(\lambda,u)<\mu(q,u)=q$ from (4), a contradiction. By similar deduce, we claim that $\lambda=\mu(\lambda,u)$.
So all remains is to show (5), but it seems not trivial.
My another try is to consider the function \begin{align} f:\ \mathbb R&\longrightarrow\mathbb R \\ \lambda&\longmapsto f(\lambda)=T(\lambda u)\cdot v \end{align} for a fixed $v\in\mathbb R^n$. From additivity of $T$, we have $f(\lambda+\varepsilon)=f(\lambda)+f(\varepsilon),\ \forall\lambda,\varepsilon$. Since $f(\lambda)$ is a inner product with respect to $u$, I think we can someway show that $f(\lambda)$ is continuous, which will lead $f$ is linear. But this is not simple.
May anyone provide me some interesting hint ? Thanks