If, for $x>0$, we use
$$\tan ^{-1}(n x)=\frac \pi 2 -\tan ^{-1}\left(\frac{1}{n x}\right)$$ and
$$\tan ^{-1}\left(\frac{1}{n x}\right)=\sum_{m=0}^\infty\frac {(-1)^m}{(2 m+1)\, x^{2 m+1}\,\, n^{2 m+1} }$$
$$f(x)=\frac{\pi ^3}{12}-\sum_{m=0}^\infty(-1)^m\,\,\frac { \zeta (2 m+3)}{(2 m+1)\, x^{2 m+1} }$$
Using $\sum_{m=0}^{20}$ for $x=2$, the absolute error is $2.13 \times 10^{-15}$.
Edit
If we write
$$\tan ^{-1}\left(\frac{1}{n x}\right)=\sum_{m=0}^p +\sum_{m=p+1}^\infty $$ we can know in advance $p$ such that
$$R_p=\frac{ \zeta (2 m+5)}{(2 m+3)\,x^{2 m+3}} \leq 10^{-k}$$
This is equivalent to
$$2 p x^{2 p+3} \geq 10^k \quad \implies \quad p\sim\frac{1}{2 \log (x)}\,\,W\left(\frac{ \log (x)}{x^3}\, 10^k\right)$$ where $W(.)$ is Lambert function.
For $x=e$ and $k=20$, this gives as a real $p=19.6892$ while the exact solution is $19.6534$