Note that $$1-t^2 \le\frac{1}{1+t^2} \le 1$$ for a real $t$ (the inequalities hold with equality only when $t=0$). Therefore,
$$\int_0^{x}(1-t^2)\, dt \le \int_0^{x}\frac{1}{1+t^2}\, dt \le \int_0^{x}1\, dt$$
for $x \ge 0$. That is,
$$x-\frac{x^3}{3} \le \arctan(x) \le x.$$
The inequalities hold with equality only when $x=0$.
As suggested in the comments, for $x > 0$, we have
$$\int_{x/2}^{x}(1-t^2)\, dt < \int_{x/2}^{x}\frac{1}{1+t^2}\, dt < \int_{x/2}^{x} 1\, dt.$$
Therefore,
$$\int_{0}^{x}(1-t^2)\, dt < \int_{0}^{x}\frac{1}{1+t^2}\, dt < \int_{0}^{x} 1\, dt$$
for $x > 0$.