In order to arrive at this inequality, we can use an approach that uses your ideas. We have for every $m$,
$$\dfrac{1}{m+1} < \ln(m+1) - \ln(m) < \dfrac{1}{m}$$
Now consider the right hand side:
$$ \ln(m+1) - \ln(m) < \dfrac{1}{m}$$
Putting $m=k$, we can arrive at the left hand side inequality as follows:
$$ \begin{align}\ln(k+1) &< \dfrac{1}{k} + \ln(k) \\ &< \dfrac{1}{k}+ \dfrac{1}{k-1} + \ln(k-1) \tag{putting $m=k-1$} \\ &\vdots \\ &< \sum^{k}_{i=1} \dfrac{1}{i} \end{align}$$
This gives the lower bound of the required inequality.
Now consider,
$$\dfrac{1}{m+1} < \ln(m+1) - \ln(m)$$
$$ \implies \dfrac{1}{m+1} + \ln(m) < \ln(m+1)$$
Here we will start with $m=k-1$:
$$\begin{align} \ln(k) &> \dfrac{1}{k} + \ln(k-1) \\
&> \dfrac{1}{k}+ \dfrac{1}{k-1}+\ln(k-2) \tag{putting $m=k-2$} \\
&\vdots \\
&> \sum^{k}_{i=2} \dfrac{1}{i} + \ln(1) \\ &= \sum^{k}_{i=2} \dfrac{1}{i} \end{align}$$
Thus, adding 1 on both sides gives us the desired upper bound of the inequality.
QED.