Recently I got interested in Logarithmic Integrals from this $\int_{0}^{1}\frac{\ln^4\left(1-x^{2}\right)}{1+x}dx$ and sought out to find Higher Power variations.
Let, $$I_n=\int_{0}^{1}\frac{\ln^n\left(1-x^{2}\right)}{1+x}dx$$
Consider the following expression : $$E=\zeta(\alpha_1)\zeta(\alpha_2)...\zeta(\alpha_n)\ln^\alpha2$$ whose weight is $\alpha_1+\alpha_2+...+\alpha_n+\alpha.$
$$\boxed{\text{Conjecture: All $I_n$ can be written as a Linear Combination involving Expression $E$ of weight $n+1$.}}$$
Here are the first few examples :
$$I_1=-\frac{1}{2}\zeta\left(2\right)+\ln^{2}2$$
$$I_2=2\zeta\left(3\right)-2\zeta\left(2\right)\ln 2+\frac{4}{3}\ln^32$$
$$I_3=-\frac{27}{4}\zeta\left(4\right)+12\zeta\left(3\right)\ln2-6\zeta\left(2\right)\ln^22+2\ln^42$$
$$I_4=72ζ\left(5\right)-24ζ\left(3\right)ζ\left(2\right)-54ζ\left(4\right)\ln2+48ζ\left(3\right)\ln^{2}2-16ζ\left(2\right)\ln^{3}2+\frac{16}{5}\ln^{5}2$$
$$I_5=-\frac{1185}{4}ζ\left(6\right)+120ζ^{2}\left(3\right)+720ζ\left(5\right)\ln2-240ζ\left(3\right)ζ\left(2\right)\ln2-270ζ\left(4\right)\ln^{2}2+160ζ\left(3\right)\ln^{3}2-40ζ\left(2\right)\ln^{4}2+\frac{16}{3}\ln^{6}2$$
$$I_6=6480ζ\left(7\right)-2160ζ\left(5\right)ζ\left(2\right)-1620ζ\left(4\right)ζ\left(3\right)-3555ζ\left(6\right)\ln2+1440ζ^{2}\left(3\right)\ln2+4320ζ\left(5\right)\ln^{2}2-1440ζ\left(3\right)ζ\left(2\right)\ln^{2}2-1080ζ\left(4\right)\ln^{3}2+480ζ\left(3\right)\ln^{4}2-96ζ\left(2\right)\ln^{5}2+\frac{64}{7}\ln^{7}2$$
Could the Conjecture be Proved or Disproved.
I had made a Similar Conjecture for another Logarithmic Integral of Similar Form but it stopped working from Weight $8$.