This question is similar to my last question.
It's also from the same book, Problem 1.8(iii).
$$I=\int_0^1\dfrac{\log^4(1-x^2)}{1+x}dx$$
Wolfram Alpha can't give the closed form, it is only giving a numerical expression.
According to the book $$I=\dfrac{16}{5}\log^52-16\log^32\zeta(2)+48\log^22\zeta(3)-54\log2\zeta(4)-24\zeta(2)\zeta(3)+72\zeta(5)$$
I tried taking substitutions like $y=1-x^2$. It didn't take me anywhere. Is there some way to solve this integral?

- 910
- 1
- 5
- 23
-
2The bad joke is that Wolfram Alpha returns the antiderivative. No problem to eveluate it at $x=0$ but about $x=1$, I did not find any way – Claude Leibovici Oct 17 '23 at 04:10
-
\begin{align}\int_0^1 \frac{\ln^3 x\ln(1+x)}{1+x}dx=\frac{87}{16}\zeta(5)-3\zeta(2)\zeta(3)\end{align} is more cool! – FDP Oct 20 '23 at 21:41
3 Answers
Too long for a comment
One very elegant way is to exploit The Master Theorem of Series given in (Almost) Impossible Integrals, Sums, and Series (2019). So, we have that
$$\int_0^1 \frac{\log^4(1-x^2)}{1+x} \textrm{d}x$$ $$\small =\frac{1}{4}\lim_{n\to -1/2 }\frac{H_n^5+10H_n^3 H_n^{(2)}+15 H_n (H_n^{(2)})^2+20 H_n^2 H_n^{(3)}+20 H_n^{(2)} H_n^{(3)}+30 H_n H_n^{(4)}+24 H_n^{(5)}}{5 n},$$
and done. One would usually like to use the Polygamma function notation (here one may observe the special cases with the argument $1/2$ are well-known).
Who cares to learn to use The Master Theorem of Series may find examples with its use and power both in (Almost) Impossible Integrals, Sums, and Series (2019) and More (Almost) Impossible Integrals, Sums, and Series (2023).
End of story

- 5,319
-
I don't really get how we can derive this or further simplify it. Can you please elaborate a little? – Souparna Oct 18 '23 at 10:09
-
@Souparna You may check a simpler similar case presented in the sequel, on page $630$. – user97357329 Oct 18 '23 at 10:33
Complete solution.
No harmonic sums, no Beta function are used.
The "obvious" part, \begin{align}J&=\int_0^1\frac{\log^4(1-x^2)}{1+x}dx\\ &=2\int_0^1\frac{\log^4(1-x)}{1+x}dx+12\int_0^1\frac{\log^2(1-x)\log^2(1+x)}{1+x}dx+2\underbrace{\int_0^1\frac{\log^4(1+x)}{1+x}dx}_{=\frac{1}{5}\ln^5 2}-\\& \underbrace{\int_0^1\frac{\log^4(\frac{1-x}{1+x})}{1+x}dx}_{u=\frac{1-x}{1+x}}\\ &=2\underbrace{\int_0^1\frac{\log^4(1-x)}{1+x}dx}_{=J_1}+12\underbrace{\int_0^1\frac{\log^2(1-x)\log^2(1+x)}{1+x}dx}_{=J_2}+\frac{2}{5}\ln^5 2-\underbrace{\int_0^1 \frac{\ln^4 u}{1+u}du}_{=J_3}\\ J_3&=\int_0^1\frac{\ln^4 u}{1-u}du-\underbrace{\int_0^1\frac{2u\ln^4 u}{1-u^2}du}_{z=u^2}=\left(1-\frac{1}{16}\right)\int_0^1\frac{\ln^4 u}{1-u}du=\boxed{\frac{45}{2}\zeta(5)}\\ J_1&\overset{u=1-x}=\frac{1}{2}\int_0^1 \frac{\ln^4 u}{1-\frac{u}{2}}du=24\text{Li}_5\left(\frac{1}{2}\right)\\ \end{align}
The hardest part is to compute, \begin{align}J_2=\int_0^1\frac{\log^2(1-x)\log^2(1+x)}{1+x}dx\end{align}
NB:I assume, \begin{align}a\neq 0,\left|a\right|\leq 1,n\geq 1,\text{integer},\int_0^1\frac{\ln^n x}{1-ax}dx=\frac{(-1)^nn!}{a}\text{Li}_{n+1}(a)\end{align}
First addendum. \begin{align}K_n&=\int_0^1 \frac{\ln^n (1+x)}{x}dx\\ &\overset{u=\frac{1}{1+x}}=(-1)^n\int_{\frac{1}{2}}^1\frac{\ln^n u}{u(1-u)}du=\frac{\left(\ln 2\right)^{n+1}}{1+n}+(-1)^n\int_{\frac{1}{2}}^1\frac{\ln^n u}{1-u}du\\ &=\frac{\left(\ln 2\right)^{n+1}}{1+n}+(-1)^n\int_0^1\frac{\ln^n u}{1-u}du-(-1)^n\underbrace{\int_0^{\frac{1}{2}}\frac{\ln^n u}{1-u}du}_{z=2u}\\ \end{align}
For $n\geq 1$, integer, \begin{align}A_n&=\int_0^{\frac{1}{2}} \frac{\ln^n x}{1-x}dx\\ &\overset{z=2x}=\frac{1}{2}\int_0^1\frac{\ln^n\left(\frac{z}{2}\right)}{1-\frac{z}{2}}dz=\frac{1}{2}\int_0^1\frac{\sum_{k=0}^n\binom{n}{k}(-1)^k(\ln 2)^k(\ln z)^{n-k}}{1-\frac{z}{2}}dz\\ &=(-1)^n(\ln 2)^{n+1}+(-1)^n\underbrace{\sum_{k=0}^{n-1}\binom{n}{k}(n-k)!(\ln 2)^k\text{Li}_{n+1-k}\left(\frac{1}{2}\right)}_{l=n-k}\\&=\boxed{(-1)^n(\ln 2)^{n+1}+(-1)^n\sum_{l=1}^n\binom{n}{l}l!(\ln 2)^{n-l}\text{Li}_{l+1}\left(\frac{1}{2}\right)}\\ K_n&=\int_0^1 \frac{\ln^n (1+x)}{x}dx\\ &\overset{u=\frac{1}{1+x}}=(-1)^n\int_{\frac{1}{2}}^1\frac{\ln^n u}{u(1-u)}du=\frac{\left(\ln 2\right)^{n+1}}{1+n}+(-1)^n\int_{\frac{1}{2}}^1\frac{\ln^n u}{1-u}du\\ &=\frac{\left(\ln 2\right)^{n+1}}{1+n}+(-1)^n\int_0^1\frac{\ln^n u}{1-u}du-(-1)^n\int_0^{\frac{1}{2}}\frac{\ln^n u}{1-u}du\\ &=\frac{\left(\ln 2\right)^{n+1}}{1+n}+n!\zeta(n+1)-(-1)^nA_n\\&=\boxed{\frac{-n\left(\ln 2\right)^{n+1}}{1+n}+n!\zeta(n+1)-\sum_{l=1}^n\binom{n}{l}l!(\ln 2)^{n-l}\text{Li}_{l+1}\left(\frac{1}{2}\right)} \end{align} \begin{align}J_2&\overset{u=\frac{1-x}{1+x}}=\int_0^1\frac{\ln^2\left(\frac{2}{1+u}\right)\left(\ln^2\left(\frac{2}{1+u}\right)+\ln^2 u+2\ln\left(\frac{2}{1+u}\right)\ln u\right)}{1+u}du\\ &=\underbrace{\int_0^1 \frac{\ln^4\left(\frac{2}{1+u}\right)}{1+u}du}_{z=\frac{1-u}{1+u}}-2\underbrace{\int_0^1 \frac{\ln^3 (1+u)\ln u}{1+u}du}_{\text{IBP}}+\underbrace{\int_0^1 \frac{\ln^2 (1+u)\ln^2 u}{1+u}du}_{=J_4}+6\times\\&\ln 2\underbrace{\int_0^1 \frac{\ln^2 (1+u)\ln u}{1+u}du}_{\text{IBP}}- 2\ln 2\underbrace{\int_0^1 \frac{\ln(1+u)\ln^2 u}{1+u}du}_{=J_5}-6\ln^2 2\underbrace{\int_0^1 \frac{\ln (1+u)\ln u}{1+u}du}_{\text{IBP}}+\\&\ln^2 2\int_0^1 \frac{\ln^2 u}{1+u}du+2\ln^3 2\int_0^1 \frac{\ln u}{1+u}du\\ &=\frac{\ln^5 2}{5}+\frac{K_4}{2}+J_4-2K_3\ln 2-2J_5\ln 2+3K_2\ln^2 2+\frac{3\zeta(3)\ln^2 2}{2}-\frac{\pi^2\ln^3 2}{6} \end{align} \begin{align} J_5&=-\frac{1}{3}\left(\underbrace{\int_0^1\frac{\ln^3\left(\frac{u}{1+u}\right)}{1+u}du}_{z=\frac{u}{1+u}}-\int_0^1\frac{\ln^3 u}{1+u}du+\int_0^1\frac{\ln^3(1+u)}{1+u}du-3\underbrace{\int_0^1\frac{\ln^2(1+u)\ln u}{1+u}du}_{\text{IBP}}\right)\\ &=-\frac{A_3}{3}-\frac{7\pi^4}{360}-\frac{\ln^4 2}{12}-\frac{K_3}{3} \end{align} Therefore, \begin{align}J_2=3K_2\ln^2 2-\frac{4K_3\ln 2}{3}+\frac{K_4}{2}+\frac{2A_3\ln 2}{3}+\frac{11\ln^5 2}{30}-\frac{\pi^2\ln^3 2}{6}+\frac{3\zeta(3)\ln^2 2}{2}+\frac{7\pi^4\ln 2}{180}+J_4\end{align} Since, \begin{align}K_2&=-\frac{2\ln^3 2}{3}+2\zeta(3)-2\text{Li}_2\left(\frac{1}{2}\right)\ln 2-2\text{Li}_3\left(\frac{1}{2}\right)=\frac{\zeta(3)}{4}\\ A_3&=-\ln^4 2-3\text{Li}_2\left(\frac{1}{2}\right)\ln^2 2-6\text{Li}_3\left(\frac{1}{2}\right)\ln 2-6\text{Li}_4\left(\frac{1}{2}\right)\\ &=-\frac{\ln^4 2}{2}+\frac{\pi^2\ln^2 2}{4}-\frac{21\zeta(3)\ln 2}{4}-6\text{Li}_4\left(\frac{1}{2}\right)\\ K_3&=-\frac{\ln^4 2}{4}+\frac{\pi^2\ln^2 2}{4}-\frac{21\zeta(3)\ln 2}{4}+\frac{\pi^4}{15}-6\text{Li}_4\left(\frac{1}{2}\right)\\ K_4&=-\frac{4\ln^5 2}{5}+\frac{2\pi^2\ln^3 2}{3}-\frac{21\zeta(3)\ln^2 2}{2}-24\text{Li}_4\left(\frac{1}{2}\right)\ln 2+24\zeta(5)-24\text{Li}_5\left(\frac{1}{2}\right) \end{align} then, \begin{align}J_2=-\frac{\ln^5 2}{30}+\frac{\zeta(3)\ln^2 2}{2}-\frac{\pi^4\ln 2}{20}-8\text{Li}_4\left(\frac{1}{2}\right)\ln 2+12\zeta(5)-12\text{Li}_5\left(\frac{1}{2}\right)+J_4\end{align} I assume, \begin{align}\text{Li}_2\left(\frac{1}{2}\right)&=\frac{\pi^2}{12}-\frac{\ln^2 2}{2},\text{Li}_3\left(\frac{1}{2}\right)=\frac{7\zeta(3)}{8}+\frac{\ln^3 2}{6}-\frac{\pi^2 \ln 2}{12}\\ \end{align}
To terminate the computation i have to compute, \begin{align}J_4=\int_0^1 \frac{\ln^2(1+x)\ln^2 x}{1+x}dx\overset{?}=\end{align}
To be continued...
Second addendum.
$m\geq 0, n\geq 0$, integers \begin{align}W_{m,n}&=\int_0^{\frac{1}{2}} \frac{\ln^m(1-x)\ln^nx}{1-x}dx\end{align} Since, \begin{align}W_{2,2}&\overset{\text{IBP}}=-\frac{1}{3}\Big[\ln^3(1-x)\ln^2 x\Big]_0^{\frac{1}{2}}+\frac{2}{3}\underbrace{\int_0^{\frac{1}{2}} \frac{\ln^3(1-x)\ln x}{x}dx}_{u=1-x}\\ &=\frac{\ln^5 2}{3}+\frac{2}{3}\underbrace{\int_0^1\frac{\ln(1-u)\ln^3 u}{1-u}du}_{=J_6}-\frac{2}{3}W_{1,3}\\ W_{3,1}&\overset{\text{IBP}}=-\frac{1}{4}\Big[\ln^4(1-x)\ln x\Big]_0^{\frac{1}{2}}+\frac{1}{4}\underbrace{\int_0^{\frac{1}{2}} \frac{\ln^4(1-x)}{x}dx}_{u=1-x}\\ &=\frac{\ln^5 2}{4}+\frac{1}{4}\int_0^1 \frac{\ln^4 u}{1-u}du-\frac{1}{4}A_4=\frac{\ln^5 2}{4}+6\zeta(5)-\frac{1}{4}A_4\\ \int_0^{\frac{1}{2}}\frac{\ln^4\left(\frac{x}{1-x}\right)}{1-x}dx&=A_4-4W_{1,3}+6W_{2,2}-4W_{3,1}+\underbrace{W_{4,0}}_{=\frac{\ln^5 2}{5}}\\ &=2A_4+\frac{6\ln^5 2}{5}-24\zeta(5)-8W_{1,3}+4J_6\\ J_4&\overset{u=\frac{x}{1+x}}=\int_0^{\frac{1}{2}}\frac{\ln^2(1-u)\ln^2\left(\frac{u}{1-u}\right)}{1-u}du=W_{2,2}-2W_{3,1}+W_{4,0}\\ &=\frac{A_4}{2}+\frac{\ln^5 2}{30}-12\zeta(5)-\frac{2W_{1,3}}{3}+\frac{2J_6}{3} \end{align} then, \begin{align}-\frac{1}{8}\int_0^{\frac{1}{2}}\frac{\ln^4\left(\frac{x}{1-x}\right)}{1-x}dx+\frac{3}{2}J_4&=\frac{A_4}{2}-\frac{\ln^5 2}{10}-15\zeta(5)+\frac{J_6}{2}\\ J_4&=\frac{A_4}{3}-\frac{\ln^5 2}{15}-10\zeta(5)+\frac{1}{12}\underbrace{\int_0^{\frac{1}{2}}\frac{\ln^4\left(\frac{x}{1-x}\right)}{1-x}dx}_{u=\frac{x}{1-x}}+\frac{J_6}{3}\\ &=\frac{A_4}{3}-\frac{\ln^5 2}{15}-\frac{65\zeta(5)}{8}+\frac{J_6}{3}\\ \end{align} Since, \begin{align}A_4=\ln^5 2-\frac{2\pi^2\ln^3 2}{3}+\frac{21\zeta(3)\ln^2 2}{2}+24\text{Li}_4\left(\frac{1}{2}\right)\ln 2+24\text{Li}_5\left(\frac{1}{2}\right)\end{align} then, \begin{align}J_4&=\frac{4\ln^5 2}{15}-\frac{2\pi^2\ln^3 2}{9}+\frac{7\zeta(3)\ln^2 2}{2}+8\text{Li}_4\left(\frac{1}{2}\right)\ln 2-\frac{65\zeta(5)}{8}+8\text{Li}_5\left(\frac{1}{2}\right)+\frac{J_6}{3}\end{align} To terminate the computation, i have to compute $\displaystyle J_6=\int_0^1 \frac{\ln(1-x)\ln^3 x}{1-x}dx$.
The use of Beta function, harmonic sums are possible ways, but there is an alternative.
To be continued...
Epilogue.
\begin{align}J_6&\overset{\text{IBP}}=\left[\ln(1-x)\left(\int_0^x\frac{\ln^3 t}{1-t}dt-\int_0^1\frac{\ln^3 t}{1-t}dt\right)\right]_0^1+\\&\int_0^1\int_0^1\left(\frac{x\ln^3(tx)}{(1-x)(1-tx)}- \frac{\ln^3 t}{(1-x)(1-t)}\right)dtdx\\ &=\int_0^1\int_0^1\left(\frac{\ln^3 x+3\ln^2x\ln t+3\ln x\ln^2 t}{(1-x)(1-t)}-\frac{\ln^3(tx)}{(1-t)(1-tx)}\right)dtdx\\ &\overset{\text{Fubini}}=-2\pi^2\zeta(3)+\int_0^1\int_0^1\left(\frac{\ln^3 x}{(1-x)(1-t)}-\frac{\ln^3(tx)}{(1-t)(1-tx)}\right)dtdx\\ &=-2\pi^2\zeta(3)+\int_0^1\left(\frac{1}{1-t}\left(\int_0^1 \frac{\ln^3 x}{1-x}dx\right)-\frac{1}{t(1-t)}\left(\int_0^t\frac{\ln^3 u}{1-u}du\right)\right)dt\\ &=-2\pi^2\zeta(3)+\int_0^1\left(\frac{1}{1-t}\left(\int_t^1 \frac{\ln^3 x}{1-x}dx\right)-\frac{1}{t}\left(\int_0^t\frac{\ln^3 u}{1-u}du\right)\right)dt\\ &\overset{\text{IBP}}=-2\pi^2\zeta(3)-J_6+\underbrace{\int_0^1\frac{\ln^4 t}{1-t}dt}_{=24\zeta(5)}\\ J_6&=\boxed{\int_0^1 \frac{\ln(1-t)\ln^3 t}{1-t}dt=12\zeta(5)-\pi^2\zeta(3)}\\ J_4&=\\&\boxed{\int_0^1 \frac{\ln^2(1+t)\ln^2 t}{1+t}dt=\frac{4\ln^5 2}{15}-\frac{2\pi^2\ln^3 2}{9}+\frac{7\zeta(3)\ln^2 2}{2}+8\text{Li}_4\left(\frac{1}{2}\right)\ln 2-\frac{\pi^2\zeta(3)}{3}-\frac{33\zeta(5)}{8}+8\text{Li}_5\left(\frac{1}{2}\right)}\\ J_2&=\\&\boxed{\int_0^1\!\frac{\ln^2(1-t)\!\ln^2(1+t)}{1+t}\!\!dt\!=\frac{7\ln^5 2}{30}\!-\!\frac{2\pi^2\ln^3 2}{9}+4\zeta(3)\ln^2 2-\frac{\pi^4\ln 2}{20}-\frac{\pi^2\zeta(3)}{3}+\frac{63\zeta(5)}{8}-4\text{Li}_5\left(\frac{1}{2}\right)}\\ J&=\\&\boxed{\int_0^1 \frac{\ln^4(1-t^2)}{1+t}dt=\frac{16\ln^5 2}{5}-\frac{8\pi^2\ln^3 2}{3}+48\zeta(3)\ln^2 2-\frac{3\pi^4\ln 2}{5}-4\pi^2\zeta(3)+72\zeta(5)} \end{align} Proof completed.
Bonus. \begin{align}\int_0^1 \frac{\ln(1+x)\ln^3 x}{1+x}dx&=\frac{1}{4}\int_0^1 \frac{\ln^4(1+x)}{1+x}dx-\underbrace{\frac{1}{4}\int_0^1 \frac{\ln^4\left(\frac{x}{1+x}\right)}{1+x}dx}_{u=\frac{x}{1+x}}+\frac{3}{2}J_4+\\&\frac{1}{4}\int_0^1\frac{\ln^4 x}{1+x}dx-\underbrace{\int_0^1 \frac{\ln^3(1+x)\ln x}{1+x}dx}_{\text{IBP}}\\ &=\frac{\ln^5 2}{20}-\frac{A_4}{4}+\frac{3}{2}J_4+\frac{45\zeta(5)}{8}+\frac{K_4}{4}=\boxed{\frac{87\zeta(5)}{16}-\frac{\pi^2\zeta(3)}{2}} \end{align}

- 13,647
-
It doesn't help a lot as the integral in the OP arose in the calculation of the integral $J_2$ in your answer. So, it goes in a circle. – Souparna Oct 19 '23 at 11:31
-
-
-
@Souparna: The best i can do for now is to link this integral to this one,$\displaystyle \int_0^1 \frac{\ln^3 x\ln(1+x)}{1+x}dx$ or to this one, $\displaystyle \int_0^1 \frac{\ln^3 x\ln(1-x)}{1+x}dx$, none i can compute for now. – FDP Oct 20 '23 at 10:31
-
Consider : $$J\left(m,n\right)=\int_{0}^{1}\frac{\ln^m\left(s\right)\ln^n\left(1+s\right)}{1+s}ds$$ @FDP Just another relation, might help or maybe not : $$4J\left(1,3\right)-3J\left(2,2\right)=-\frac{93}{8}\cdot \zeta\left(5\right)+6\cdot\zeta\left(2\right)\zeta\left(3\right)$$ – Miracle Invoker Oct 21 '23 at 07:20
-
@Black Emperor: When you develop $\displaystyle \int_0^1\frac{\ln^4\left(\frac{x}{1+x}\right)}{1+x}dx$, you get a rational linear combination of $\displaystyle U_{m,n}= \int_0^1 \frac{\ln^m(1+x)\ln^n x}{1+x}$. If only one hasn't an "obvious" computation it's ok, but, here, two are difficult to evaluate $U_{1,3}$ and $U_{2,2}$. – FDP Oct 21 '23 at 12:43
-
Hopefully an Answer in progress If I can work on it but just consider it as a long comment right now.
$$I=\int_{0}^{1}\frac{\ln^4\left(1-x^{2}\right)}{1+x}dx$$
Rewrite: $$\ln\left(1-x^{2}\right)=\ln\left(\frac{1-x}{1+x}\right)+2\ln\left(1+x\right)$$ and expand.
Consider : $$I(m,n)=\int_{0}^{1}\frac{\ln\left(\frac{1-x}{1+x}\right)^{m}\ln\left(1+x\right)^{n}}{1+x}dx$$
Then, $$I=I\left(4,0\right)+16I\left(0,4\right)+24I\left(2,2\right)+32I\left(1,3\right)+8I\left(3,1\right)$$
By Wolfram: $$16I(0,4)=\frac{16}{5}\ln^5\left(2\right)$$
Which is also a term directly present in the answer given in OP.
This makes me think that this could be the correct approach.
Also by Wolfram,
$$I(4,0)=\frac{45}{2}\zeta(5)$$

- 3,200
- 1
- 3
- 22
-
-
Actually, the difficult part is to compute, $\displaystyle \int_0^1 \frac{\ln^4(1-x)}{1+x}dx,\int_0^1 \frac{\ln^2(1-x)\ln^2(1+x)}{1+x}dx$ all the remaining is "obvious" as far as i can see. – FDP Oct 18 '23 at 17:22
-
$\displaystyle \int_0^1 \frac{\ln^4(1-x)}{1+x}dx$ is "obvious" too, if you know that the expression for it contains $\displaystyle \text{Li}_5\left(\frac{1}{2}\right)$ – FDP Oct 18 '23 at 17:37