Let $R= \left\{ \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix} : a,b \in \mathbb{Z} \right\} $ be the ring of symmetric integer matrices with same diagonal elements.
Is the ring $R$ isomorphic to $\mathbb{Z} \times \mathbb{Z}$ ?
My thoughts:
The two rings are very similar. They have the same amount of inversible elements, $U(R)= \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} , \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ \end{bmatrix} , \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ \end{bmatrix} \right\} $ and $U(\mathbb{Z} \times \mathbb{Z}) = \{(1,1),(-1,-1),(1,-1),(-1,1)\}$.
I have tried $f:R \rightarrow \mathbb{Z} \times \mathbb{Z}, f\left( \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix}\right)=(a,b) $, which fails to be homorphism, due to multiplication.
I have also tried $g:R \rightarrow \mathbb{Z} \times \mathbb{Z}, g\left( \begin{bmatrix} a & b \\ b & a \\ \end{bmatrix}\right)=(a-b,a+b) $, which fails to be a surjection, even though it is injective homomorphism.