By below Lemma $\,\Bbb Z[x]/(x^2\!-\!1)\cong\:\! \Bbb Z\!\times\! \Bbb Z\,$ $\Rightarrow\, \overbrace{(x\!-\!1)\,a(x)\!+\!(x\!+\!1)\,b(x) = 1}^{\large x-1,\ x+1\ \ {\rm are\ \color{#0a0}{comaximal}\ in}^{\phantom{}}\ \Bbb Z[x]}\ \ \smash{\overset{x\,\to\, 1}\Longrightarrow}\ \ \bbox[4px,border:1px solid #0a0]{2\mid 1}\,$ in $\Bbb Z$
Idea $ $ proper factorizations of $\,R/f\,$ $\rm\small\color{#f60}{induce}$ coprime $\small\rm\color{#0a0}{(i.e. comaximal)}$ proper
factorizations of $f\,$ by
Lemma $ $ If $\ \begin{align}f\in R\,\ \rm a\ UFD,\\ {\rm rings}\ G,H\!\neq 0\end{align}\,\ $ then $\, \begin{align} R/f\,\ &\cong\,\ G\!\times\! H\\ \color{#f60}{\bf\large \Rightarrow} f\ \ &\!\!=\ g\ h\end{align}\, $ with $\ \begin{align} &\color{#0a0}{(g)\!+\!(h)=(1)^{\phantom{|^|}}\!\!}\\ &\,(g),\, (h)\neq\:\! (1)\end{align}\,$ for some $\,g,h\in R^{\phantom{|^|}}\!\!\!$
Proof $\ $ See this answer for a simple $\,4\,$ line proof.