Let $f \in \mathbb{Z}[x]$.
Since $f(x)-f(y)\;$is divisible by $x-y\;$in the ring $\mathbb{Z}[x,y]$, it follows that $(m-n)\mid (f(m) - f(n))$ for all integers $m,n$.
In particular, using $m=1,\;n=-1$, we get $f(1) \equiv f(-1)\;(\text{mod}\;2)$.
Let $I$ denote the ideal $(x^2-1)$ of $\mathbb{Z}[x]$.
Let $R\;$be the subring of $\mathbb{Z}{\,\times\,}\mathbb{Z}$ defined by
$$R = \{(a,b) \in \mathbb{Z}{\,\times\,}\mathbb{Z} \mid a \equiv b\;(\text{mod}\;2)\}$$
and let $\phi:\mathbb{Z}[x] \to R\;$be defined by
$$\phi(f) = (f(1),f(-1))$$
It's routine to verify that $\phi$ is a ring homomorphism.
Moreover, $\phi$ is surjective, since, if $(a,b) \in R$, then
$$\phi(cx + d) = (a,b)$$
where $c,d$ are defined by
$$c=\frac{a-b}{2},\;\;d=\frac{a+b}{2}$$
Computing the kernel of $\phi$,
\begin{align*}
&\phi(f) = (0,0)\\[4pt]
\iff\;&(f(1),f(-1))=(0,0)\\[4pt]
\iff\;&f(1) = 0\;\,\text{and}\;\,f(-1)=0\\[4pt]
\iff\;&(x-1){\mid}f\;\,\text{and}\;\,(x+1){\mid}f\\[4pt]
\iff\;&(x^2-1){\mid}f\\[4pt]
\iff\;&f \in I\\[4pt]
\end{align*}
so the kernel of $\phi$ is $I$.
It follows thar $\mathbb{Z}[x]/I \cong R$, as was to be shown.