I am trying to evaluate this: $$I=\int\limits_0^{\sqrt 2 } {\frac{1}{{3{a^2} + 2}}\frac{{\arctan \left( {\sqrt {{a^2} + 1} } \right)}}{{\sqrt {{a^2} + 1} }}da} $$ It looks like Ahmed's integral, but I don't know how to solve this. Here is what I tried: $$\eqalign{ & I\left( b \right) = \int\limits_0^{\sqrt 2 } {\frac{1}{{3{a^2} + 2}}\frac{{\arctan \left( {b\sqrt {{a^2} + 1} } \right)}}{{\sqrt {{a^2} + 1} }}da} ,I\left( 0 \right) = 0 \cr & I'\left( b \right) = \int\limits_0^{\sqrt 2 } {\frac{1}{{\left( {3{a^2} + 2} \right)\left( {1 + {b^2}\left( {{a^2} + 1} \right)} \right)}}da} = \left. {\left( {\frac{{\sqrt 6 }}{{2{b^2} + 6}}{{\tan }^{ - 1}}\left( {\sqrt {\frac{3}{2}} a} \right) - \frac{b}{{\sqrt {{b^2} + 1} \left( {{b^2} + 3} \right)}}{{\tan }^{ - 1}}\left( {\frac{{ab}}{{\sqrt {{b^2} + 1} }}} \right)} \right)} \right|_0^{\sqrt 2 } \cr & = \frac{{\pi \sqrt {\frac{2}{3}} }}{{2{b^2} + 6}} - \frac{b}{{\left( {{b^2} + 3} \right)\sqrt {{b^2} + 1} }}{\tan ^{ - 1}}\left( {\frac{{\sqrt 2 b}}{{\sqrt {{b^2} + 1} }}} \right),{\text{ integrate both sides from 0 to }}1 \cr & I\left( 1 \right){\text{ = }}\int\limits_0^1 {\left( {\frac{{\pi \sqrt {\frac{2}{3}} }}{{2{b^2} + 6}} - \frac{b}{{\left( {{b^2} + 3} \right)\sqrt {{b^2} + 1} }}{{\tan }^{ - 1}}\left( {\frac{{\sqrt 2 b}}{{\sqrt {{b^2} + 1} }}} \right)} \right)db = \frac{{{\pi ^2}}}{{18\sqrt 2 }} - } {\text{ }}\int\limits_0^1 {\frac{b}{{\left( {{b^2} + 3} \right)\sqrt {{b^2} + 1} }}{{\tan }^{ - 1}}\left( {\frac{{\sqrt 2 b}}{{\sqrt {{b^2} + 1} }}} \right)db} \cr} $$
At this point, I don't know how to process further. May I ask for help? Thank you very much.