Not an answer just an approach
Using the well-know formula $\arctan\left(x\right)+\operatorname{arccot}\left(x\right)=\pi/2$ and $n\geq 2$ an integer ,$x>1$:
$$\int_{ }^{ }\frac{1}{x^{2n}}\cdot\frac{\arctan\left(x\right)+\operatorname{arccot}\left(x\right)}{\sqrt{x^{2}-1}}dx=\frac{\sqrt{x^{2}-1}\left(\sum_{n=0}^{M}a_{n}x^{2n}\right)\left(\arctan\left(x\right)+\operatorname{arccot}\left(x\right)\right)}{C_{n}x^{2M+1}}$$
For some positive constantes and coefficients .
Then for $0<x<1$
$$\arctan\left(x\right)-\operatorname{arccot}\left(x\right)=2x-\frac{2}{3}x^{3}+\frac{2}{5}x^{5}+\cdot\cdot\cdot$$
Then using the recurrence relation in the other answer we can use Ramanujan's master theorem setting $x\to 1/x$.
A conjecture :
Let $0.27<x<0.3$ and define for $q,c_i\in(0,\infty)$ :
$$f\left(x\right)=\frac{\pi}{4}\cdot\frac{x-1}{x}\left(1-\frac{x-1}{8\sqrt{x^{2}-1}}\left(2+\sum_{n=3}^{P}\left(u+\frac{1}{n}\right)^{-c_{n}x}\right)\right)$$
Then there exists positive constants $k,m,\alpha>0$ such that :
$$\lim_{P\to \infty}f(x) \implies \arctan\left(x\right)-f\left(\frac{1}{x}\right)-\left(kx^{\alpha}-m\right)=0$$
Then there is exponential integral and a possible telescoping in $I_0$.
On the other hand it's like a Troyan's horse using :
Let $x,y\in[0,1)$ then we have :
$$\arctan\left(x\right)+\arctan\left(y\right)-\arctan\left(\frac{x+y}{1-xy}\right)=0$$