How to prove that $\displaystyle I=\int_0^{2\pi}e^{-x^2}\cos(x)\mathrm{d}x>0$
Clearly, $\displaystyle I=\int_0^\pi \left(e^{-x^2}-e^{-(x+\pi)^2}\right)\cos(x)\mathrm{d}x$, but this does not help.
Or else, $$I=\int_0^{2\pi} e^{-x^2}\mathrm{d}\sin(x) =2\int_0^{2\pi} xe^{-x^2}\sin(x)\mathrm{d}x =2\int_0^\pi \left(xe^{-x^2}-(x+\pi)e^{-(x+\pi)^2}\right)\sin(x)\mathrm{d}x.$$ This time, $\sin(x)$ has a good sign, but $xe^{-x^2}$ has no monotonicity property.
Any ideas?
