I'm trying to solve an exercise, i.e.,
Construct a sequence $\left(f_n\right)$ in $L^1(0,1), f_n \geq 0$, such that:
- (i) $f_n \rightarrow f$ weakly $\sigma\left(L^1, L^{\infty}\right)$,
- (ii) $\left\|f_n\right\|_1 \rightarrow\|f\|_1$,
- (iii) $\left\|f_n-f\right\|_1 \nrightarrow 0$.
- Could you confirm if my below attempt is fine?
- Is there a more intuitive example of such $(f_n, f)$?
Let $T:=1$. Let $f:\mathbb R \to \mathbb R$ be $T$-periodic such that $f(x)= 0$ if $x \in [0, 1/2)$ and $f(x)=2$ if $x \in [1/2, 1)$. Let $\bar f := \frac{1}{T} \int_0^T f (t) \, dt.$ Then $\bar f=1$. We define $f_n:(0, 1) \to \mathbb R$ by $f_n (x) := f(nx)$ for all $x \in (0, 1)$. We have
- (1) $f_n \to \bar f$ in the weak topology $\sigma (L^1 (0, 1), L^\infty (0, 1))$, and
- (2) $\lim_n \|f_n-\bar f\|_{L^1(0, 1)} = \frac{1}{T} \int_0^{T} |f-\bar f|$.
On the other hand, $\frac{1}{T} \int_0^{T} |f-\bar f| = 1>0$. By symmetry, $\|f_n\|_1 = \|f\|_1 = 1$ for all $n$.