1

Let $p \in [1, \infty]$. Let $f \in L^p_{\text{loc}} (\mathbb R)$ be $T$-periodic, i.e., $f(x+T) = f(x)$ a.e. $x \in \mathbb R$. Let $$ \bar f := \frac{1}{T} \int_0^T f (t) \, dt. $$

We define a sequence $(u_n) \subset L^p(0, 1)$ by $u_n (x) := f(nx)$ for all $x \in (0, 1)$. I'm trying to compute $\lim_n \|u_n-\bar f\|_p$. Could you have a check on my below attempt?


Let $\varphi(n) := \lfloor n/T \rfloor$. Then $$ \begin{align} \|u_n-\bar f\|_p^p &= \int_0^1 |f(nx)-\bar f|^p \, dx \\ &= \frac{1}{n} \int_0^n |f-\bar f|^p \\ &= \frac{\varphi(n)}{n} \int_0^{T} |f-\bar f|^p + \frac{1}{n} \int_{\varphi(n)T}^n |f-\bar f|^p. \end{align} $$

Clearly, $\frac{1}{n} \displaystyle\int_{\varphi(n)T}^n |f-\bar f|^p \xrightarrow{n \to \infty}0$. On the other hand, $$ \frac{\varphi(n)}{n} = \big \lfloor \frac{n}{T} \big \rfloor \frac{1}{n} \xrightarrow{n \to \infty} \frac{1}{T}. $$

It follows that $$ \lim_n \|u_n-\bar f\|_p = \bigg ( \frac{1}{T} \int_0^{T} |f-\bar f|^p \bigg)^{1/p}. $$

Kroki
  • 13,135
Analyst
  • 5,637

1 Answers1

1

Te calculation is actually much simpler that what you have. Notice that if $\phi$ is $T$ periodic and say, locally integrable, then for any $a\in\mathbb{R}$, $$\int^{T+a}_a\phi=\int^T_0\phi$$

From that observation, along with the change of variable $u=nx+b$, one gets \begin{align} \int^T_0\phi(nx+b)\,dx&=\frac{1}{n}\int^{nT+b}_b\phi(u)\,du\\ &=\frac{1}{n}\sum^{n-1}_{k=0}\int^{(k+1)T+b}_{kT+b}\phi(u)\,du\\ &=\frac{1}{n}\sum^{n-1}_{k=0}\int^{(k+1)T}_{kT}\phi(u)\,du\\ &=\int^T_0\phi(u)\,dx\end{align} In your case, take $\phi(x)=|f(x)-\overline{f}|$, where $f$ is a $1$-periodic function ($T=1$).

Mittens
  • 39,145