Let $p \in [1, \infty]$. Let $f \in L^p_{\text{loc}} (\mathbb R)$ be $T$-periodic, i.e., $f(x+T) = f(x)$ a.e. $x \in \mathbb R$. Let $$ \bar f := \frac{1}{T} \int_0^T f (t) \, dt. $$
We define a sequence $(u_n) \subset L^p(0, 1)$ by $u_n (x) := f(nx)$ for all $x \in (0, 1)$.
Theorem $u_n \to \bar f$ in the weak topology $\sigma(L^p, L^{p'})$ where $p'$ is the Hölder conjugate of $p$.
I'm reading the proof of above theorem, i.e.,
Proof First, it is easy to check that $\int_a^b u_n(t) d t \rightarrow(b-a) \bar{f}$ (for every $\left.a, b \in(0,1)\right)$. This implies that $u_n \rightarrow \bar{f}$ weakly $\sigma(L^p, L^{p^{\prime}})$ whenever $1<p \leq \infty$ (since $p^{\prime}<\infty$, step functions are dense in $L^{p^{\prime}})$. When $p=1$, i.e., $f \in L_{\mathrm{loc}}^1(\mathbb{R})$, there is a $T$-periodic function $g \in L^{\infty}(\mathbb{R})$ such that $\frac{1}{T} \int_0^T|f-g|<\varepsilon$ (where $\varepsilon>0$ is fixed arbitrarily). Set $v_n(x)=g(n x), x \in(0,1)$ and let $\varphi \in L^{\infty}(0,1)$. We have $$ \left|\int u_n \varphi-\bar{f} \int \varphi\right| \leq 3 \varepsilon\|\varphi\|_{\infty}+\left|\int v_n \varphi-\bar{g} \int \varphi\right| $$ and thus $\lim \sup _{n \rightarrow \infty}\left|\int u_n \varphi-\bar{f} \int \varphi\right| \leq 3 \varepsilon\|\varphi\|_{\infty} \forall \varepsilon>0$. It follows that $u_n \rightarrow \bar{f}$ weakly $\sigma\left(L^1, L^{\infty}\right)$.
My question Clearly, $(0, 1)$ has finite Lebesgue measure, so $L^\infty (0, 1) \subset L^1(0, 1)$ and thus step functions are still dense in $L^\infty (0, 1)$. Could you explain why
the author still considers the case $p=1$ separately?
$\lim \sup _{n \rightarrow \infty} \left|\int v_n \varphi-\bar{g} \int \varphi\right| =0$ in the proof?
Update: I have added below steps for more clarity. We have $$ \begin{align} & \left|\int_0^1 u_n \varphi-\bar{f} \int_0^1 \varphi\right| \\ \le{} & \int_0^1 |u_n - v_n| \varphi + \bigg | \int_0^1 v_n \varphi - \bar g \int_0^1 \varphi \bigg | + \int |\bar g - \bar f| \varphi \\ \le{} & \|\varphi\|_\infty \int_0^1 |u_n - v_n| + \bigg | \int_0^1 v_n \varphi - \bar g \int_0^1 \varphi \bigg | + \|\varphi\|_\infty |\bar g - \bar f|. \end{align} $$
First, $|\bar g - \bar f| = \frac{1}{T} \int_0^T|f-g|< \varepsilon$. Let $m := \lfloor n/T \rfloor$. Then $$ \begin{align} \int_0^1 |u_n - v_n| &= \int_0^1 |f(nx)-g(nx)| \, dx = \frac{1}{n} \int_0^n |f-g| \\ &= \frac{1}{n} \int_0^{mT} |f-g| + \frac{1}{n} \int_{mT}^n |f-g| \\ &= \frac{m}{n} \int_0^{T} |f-g| + \frac{1}{n} \int_{mT}^n |f-g| \\ &\le \frac{(m+1)\varepsilon T}{n} = \big ( \big \lfloor \frac{n}{T} \big \rfloor +1 \big )\frac{\varepsilon T}{n} \\ &\le 2 \frac{n}{T} \frac{\varepsilon T}{n} = 2 \varepsilon. \end{align} $$