The solution for the integral $I=\int_{0}^{1}\int_{0}^{1}\frac{1}{1-x^2 y^2}dxdy$ is given by transformation $$ x=\frac{\sin u}{\cos v}\qquad \text{and}\qquad y=\frac{\sin v}{\cos u} $$ and then integral becomes $I=\int\int_{E}dudv$, where $E$ is the trinagle with vertices $(0,0)$, $(\frac{\pi}{2},0)$ and $(0,\frac{\pi}{2})$.
I can not see how the square $\{(x,y):0\le x,y\le 1\}$ transform to the triangle $E$ under this transform?
Since $x,y\geq 0$, both sine and cosine should have same sign. It should also be $\sin u\le \cos v$ and $\sin v\le \cos u$ since $x,y\leq 1$.
For example let $A=\{(0,y):0\le y\le 1\}$ be one side of square. Under this transformation $0=x=\frac{\sin u}{\cos v}\rightarrow \sin u=0\rightarrow \cos u=1 \text{ or } \cos u=-1$. In first case, $\cos u=1\rightarrow y=\sin v\rightarrow 0\le \sin v\le 1\rightarrow v\in [0,\frac{\pi}{2}]+2k\pi$. In second case, $\cos u=-1\rightarrow y=-\sin v\rightarrow -1\le \sin v\le 0\rightarrow v\in [-\frac{\pi}{2},0]+2k\pi$. I can not see the line segment $A$ transform which shape under this transformation?