We first split the integrand into 3 parts as \begin{aligned} \int_0^1 \frac{\ln \left(1-x^4\right)}{1+x^2} d x &= \underbrace{\int_0^1 \frac{\ln \left(1+x^2\right)}{1+x^2} d x}_J+\underbrace{\int_0^1 \frac{\ln (1+x)}{1+x^2} d x}_K+ \underbrace{\int_0^1 \frac{\ln (1-x)}{1+x^2} d x}_L \end{aligned}
Denotes the Catalan’s constant by $G$.
By my post, $$J=\frac{\pi}{2}\ln2-G$$
Dealing with the last $2$ integrals, we use a powerful substitution $x=\frac{1-t}{1+t} ,$ then $dx=-\frac{2dt}{(1+t)^2}.$
$$ \begin{aligned} K&=\int_1^0 \frac{\ln 2-\ln (1+t)}{\frac{2+2 t^2}{(1+t)^2}} \frac{-2 d t}{(1+t)^2} \\ &=\ln 2 \int_0^1 \frac{d t}{1+t^2}-\int_0^1 \frac{\ln (1+t)}{1+t^2} \end{aligned} $$
Hence $$K=\frac{\pi}{8} \ln 2 $$
$$ \begin{aligned} L=& \int_0^1 \frac{\ln 2+\ln t-\ln (1+t)}{1+t^2} d t \\ &=\frac{\pi}{4} \ln 2+\int_0^1 \frac{\ln t}{1+t^2}-\int_0^1 \frac{\ln (1+t)}{1+t^2} d t . \\ &=\frac{\pi}{4} \ln 2-G-\frac{\pi}{8} \ln 2 \\ &=\frac{\pi}{8} \ln 2-G \end{aligned} $$
Combining them to get $$ \begin{aligned} I &=\left(\frac{\pi}{2} \ln 2-G\right) +\frac{\pi}{8} \ln 2 +\left(\frac{\pi}{8} \ln 2-G\right)\\ &=\frac{3 \pi}{4} \ln 2-2 G \end{aligned} $$ I do want to know if it can be solved by any other elegant methods. Your comments and methods are highly appreciated.