As I have found the integral $$\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x=-\frac{\pi}{2}\ln 2 ,$$
I started to investigate a similar integral with a different upper limit $\frac{\pi}{4}$ by similar methods with failure. Once I found the Fourier Series of sine on $[0, \pi]$, I can find it easily.
By Fourier Series $$\ln (\sin x)=-\ln 2-\sum_{n=1}^{\infty} \frac{\cos (2 n x)}{n},$$
we integral from $0$ to $\frac{\pi}{4} $, \begin{aligned} \int_{0}^{\frac{\pi}{4}} \ln (\sin x) d x&=-\int_{0}^{\frac{\pi}{4}} \ln 2 d x-\sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{4}} \frac{\cos (2 n x)}{n} d x \\ &=-\frac{\pi}{4} \ln 2-\sum_{n=1}^{\infty}\left[\frac{\sin (2 n x)}{2 n^{2}}\right]_{0}^{\frac{\pi}{4}} \\ &=-\frac{\pi}{4} \ln 2-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\sin \frac{n \pi}{2}}{n^{2}}\right)\\ &=-\frac{\pi}{4} \ln 2-\frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \\ &=-\frac{\pi}{4} \ln 2-\frac{1}{2} G, \end{aligned}
where $G$ is the Catalan's constant.
Is there any method other than using Fourier Series?