Inspired by my post, I decided to investigate the integral in general
$$ I_n=\int_0^1 \frac{\ln \left(1-x^n\right)}{1+x^2} d x$$
by the powerful substitution $x=\frac{1-t}{1+t} .$ where $n$ is a natural number greater $1$.
Let’s start with easy one
\begin{aligned} I_1 &=\int_0^1 \frac{\ln \left(\frac{2 t}{1+t}\right)}{1+t^2} d t \\ &=\int_0^1 \frac{\ln 2+\ln t-\ln (1+t)}{1+t^2} d t \\&=\frac{\pi}{4} \ln 2+\int_0^1 \frac{\ln t}{1+t^2}-\int_0^1 \frac{\ln (1+t)}{1+t^2} d t \\&=\frac{\pi}{4} \ln 2-G-\frac{\pi}{8} \ln 2 \\ &=\frac{\pi}{8} \ln 2-G\end{aligned}
By my post $$I_2= \frac{\pi}{4} \ln 2-G $$ and $$\begin{aligned}I_4 &=\frac{3 \pi}{4} \ln 2-2 G \end{aligned} $$ $$ \begin{aligned} I_3=& \int_0^1 \frac{\ln (1-x)}{1+x^2} d x +\int_0^1 \frac{\ln \left(1+x+x^2\right)}{1+x^2} d x \\=& \frac{\pi}{8} \ln 2-G+\frac{1}{2} \int_0^{\infty} \frac{\ln \left(1+x+x^2\right)}{1+x^2} d x-G \\ =& \frac{\pi}{8} \ln 2-\frac{4G}{3} +\frac{\pi}{6} \ln (2+\sqrt{3}) \end{aligned} $$
where the last integral refers to my post.
Let’s skip $I_5$ now.
$$ I_6=\int_0^1 \frac{\ln \left(1-x^6\right)}{1+x^2} d x=\int_0^1 \frac{\ln \left(1+x^3\right)}{1+x^2} d x+I_3\\ $$
$$\int_0^1 \frac{\ln \left(1+x^3\right)}{1+x^2} d x = \int_0^1 \frac{\ln (1+x)}{1+x^2} d x +\int_0^1 \frac{\ln \left(1-x+x^2\right)}{1+x^2} d x\\=\frac{\pi}{8}\ln 2+ \frac{1}{2} \int_0^{\infty} \frac{\ln \left(1-x+x^2\right)}{1+x^2} d x-G \\= \frac{\pi}{8}\ln 2+ \frac{1}{2}\left( \frac{2 \pi}{3} \ln (2+\sqrt{3})-\frac{4}{3} G \right)- G \\= \frac{\pi}{8} \ln 2+\frac{\pi}{3} \ln (2+\sqrt{3})-\frac{5}{3} G $$ Hence $$I_6= \frac{\pi}{4} \ln 2+\frac{\pi}{2} \ln (2+\sqrt{3})-3 G$$
How far can we go with the integral $I_n=\int_0^1 \frac{\ln \left(1-x^n\right)}{1+x^2} d x?$