11

I am interested in evaluating $$\sum_{n=2}^{\infty}\left (n^2 \ln\left(1-\frac{1}{n^2}\right)+1\right)$$

I am given the solution for the question is $\,\ln (\pi)-\frac{3}{2}\,.$

$$\sum_{n=2}^{\infty}\left(n^2\ln\left(\!1\!-\!\frac{1}{n^2}\!\right)+1\right)=4\ln\left(\!\frac{3}{4}\!\right)+1+9\ln\left(\!\frac{8}{9}\!\right)+1+\ldots$$

Any tricks to solve it?

Mittens
  • 39,145
Mathxx
  • 7,570
  • 1
    Actually now I realise it's not so easy. Maybe Wallis product? – Adam Rubinson Oct 31 '22 at 15:03
  • 1
    One approach that works is to define $$S(x):=\sum_{n=2}^{\infty}\left(n^2\ln\left(1-\frac{x^2}{n^2}\right)+x^2\right)$$ and evaluate $S’(x)$ via the Mittag-Leffler pole expansion series of $\cot(x)$ then integrate with respect to $x$ and use $S(0)=0$ to find your integration constant and take $x\to 1$ to get the result you are after. – KStarGamer Oct 31 '22 at 15:23
  • Note that this is in similar flavour to the questions, (1), (2), and (3), for which you can use less elementary techniques involving products whose answer can be expressed in terms of the Barnes $G$ function and derivatives of the Hurwitz $\zeta$ function. – KStarGamer Oct 31 '22 at 15:27

6 Answers6

10

Here's an elementary proof, assuming that we're allowed to use Stirling's formula: $$\ln (n!) = \sum_{k=2}^n \ln(k) = n\ln n -n + \frac 1 2 \ln n + \frac 1 2 \ln 2\pi + \mathcal O(\frac 1 n)$$

Let us study the partial sums, denoting $u_k=k^2 \ln \left(1-\frac 1 {k^2} \right) + 1$: $$\begin{align} \sum_{k=2}^n u_k &=\sum_{k=2}^n \left(k^2 \ln \left(1-\frac 1 {k^2} \right) + 1 \right) \\ &=\sum_{k=2}^n \left(k^2\ln \left(\frac {(k+1)(k-1)} {k^2}\right) + 1 \right) \\ &=\sum_{k=2}^n \left(k^2 \ln(k+1) + k^2\ln(k-1) - 2k^2\ln k + 1 \right) \\ &=-\ln 2 + n^2\ln(n+1) - (n+1)^2\ln n +\sum_{k=2}^n \left((k-1)^2 \ln k + (k+1)^2\ln k - 2k^2\ln k + 1 \right) \\ &=-\ln 2 + n^2\ln(n+1) - (n+1)^2\ln n +\sum_{k=2}^n \left(2\ln k + 1 \right) \\ &=-\ln 2 + \left(n^2\ln n + n^2 \ln(1+\frac 1 n)\right) - \left(n^2\ln n + 2n\ln n + \ln n\right) \\ &\ \ \ \ +\left(2n\ln n - 2n + \ln n + \ln 2\pi + \mathcal O(\frac 1 n)\right) + (n-1) \\ &=-\ln 2 + n^2 \ln(1+\frac 1 n) - n - 1 + \ln 2\pi + \mathcal O(\frac 1 n) \\ &=n^2 \left(\frac 1 n - \frac 1 {2n^2} + O(\frac 1 {n^3})\right) - n - 1 + \ln\pi + \mathcal O(\frac 1 n) \\ &=- \frac 3 2 + \ln\pi + \mathcal O(\frac 1 n) \end{align}$$

Therefore, as desired: $$\sum_{k=2}^{+\infty} u_k = \ln\pi - \frac 3 2$$

yoann
  • 1,363
9

Just a little simplification (without usage of WolframAlpha) to the nice posted solutions. Using the similar approach, denoting $$f(x)=\sum^\infty_{n=2}n^2\ln\left(1-\frac{x}{n^2}\right)+x$$ and taking the derivative with respect to $x$: $$f'(x)=\sum_{n=2}^\infty\frac{x}{x-n^2}=\sum_{n=1}^\infty\frac{x}{x-n^2}-\frac{x}{x-1}$$ Using $\,\,\displaystyle \pi\cot\pi z=\frac{1}{z}+2\sum_{n=1}^\infty\frac{z}{z^2-n^2}$ $$f'(x)=\frac{\pi}{2}\sqrt x\cot(\pi\sqrt x)-\frac{1}{2}-\frac{x}{x-1}=-\frac{3}{2}+\frac{\pi}{2}\sqrt x\cot(\pi\sqrt x)-\frac{1}{x-1}$$ and $$f(1)=\int_0^1f'(x)dx=-\frac{3}{2}+\lim_{\epsilon\to 0}\int_0^{1-\epsilon}\bigg(\frac{\pi}{2}\sqrt x\cot(\pi\sqrt x)-\frac{1}{x-1}\bigg)dx$$ $$=-\frac{3}{2}+\lim_{\epsilon\to 0}\Big(I_1(\epsilon)+I_2(\epsilon)\Big)\tag{1}$$ where $$I_2(\epsilon)=\int_0^{1-\epsilon}\frac{dx}{1-x}=-\ln\epsilon\tag{2}$$ and $$I_1(\epsilon)=\frac{\pi}{2}\int_0^{1-\epsilon}\sqrt x\cot(\pi\sqrt x)\,dx=\frac{1}{\pi^2}\int_0^{\pi\sqrt{1-\epsilon}}\cot(t)t^2dt$$ Integrating by part, $$I_1(\epsilon)=\frac{t^2\ln\sin t}{\pi^2}\,\bigg|_0^{\pi\sqrt{1-\epsilon}}-\frac{2}{\pi^2}\int_0^{\pi\sqrt{1-\epsilon}}\ln(\sin t)t dt$$ The second term converges at $\epsilon =0$, therefore $$I_1(\epsilon)=\ln\sin(\pi\sqrt{1-\epsilon})-\frac{2}{\pi^2}\int_0^{\pi}\ln(\sin t)t dt+O(\epsilon)$$ $$=\ln\frac{\pi \epsilon}{2}-\frac{2}{\pi^2}\int_0^{\pi}\ln(\sin t)t dt+O(\epsilon)\tag{3}$$ where $$\int_0^{\pi}\ln(\sin t)t dt=\int_0^{\frac{\pi}{2}}\ln(\sin t)tdt+\int_0^{\frac{\pi}{2}}\ln(\cos t)\Big(t+\frac{\pi}{2}\Big)dt$$ $$=\int_0^{\frac{\pi}{2}}\ln(\sin t)t dt+\int_0^{\frac{\pi}{2}}\ln(\sin t)\Big(\frac{\pi}{2}-t\Big) dt+\frac{\pi}{2}\int_0^{\frac{\pi}{2}}\ln(\cos t)dt$$ Using $\displaystyle \int_0^{\frac{\pi}{2}}\ln(\cos t)dt=\int_0^{\frac{\pi}{2}}\ln(\sin t)dt=-\frac{\pi}{2}\ln 2$ $$\int_0^{\pi}\ln(\sin t)t dt=\pi\int_0^{\frac{\pi}{2}}\ln(\sin t)dt=-\frac{\pi^2}{2}\ln2$$ Using (3), we have for $I_1(\epsilon)$ $$I_1(\epsilon)=\ln\frac{\pi \epsilon}{2}+\ln2+O(\epsilon)\tag{4}$$ Putting (2) and (4) into (1), $$f(1)=-\frac{3}{2}+\lim_{\epsilon\to 0}\Big(-\ln\epsilon+\ln\frac{\pi \epsilon}{2}+\ln2+O(\epsilon)\Big)=-\frac{3}{2}+\ln\pi$$

Svyatoslav
  • 15,657
8

This answer is just an elaboration on KStarGamer's comment. I myself went for the calculation idea.

Suppose the sum is converging. We have then $$S(x):=\sum_{n=2}^{\infty}\left(n^2\ln\left(1-\frac{x^2}{n^2}\right)+x^2\right)$$ $$\implies S'(x)=\sum_{n=2}^{\infty}\left(-\frac{2x}{n^2}n^2\frac{1}{1-\frac{x^2}{n^2}}+2x\right)$$ \begin{align*} S'(x)&=\sum_{n=2}^{\infty}\left(-2x{\frac{n^2}{n^2-x^2}}+2x\right)\\ &=2x\sum_{n=2}^{\infty}\left({\frac{n^2}{x^2-n^2}}+1\right)\\ &=2x\sum_{n=2}^{\infty}\left({\frac{n^2+x^2-n^2}{x^2-n^2}}\right)\\ &=x^2\left[2x \sum_{n=2}^{\infty}{\frac{1}{x^2-n^2}}\right]\\ &=\pi x^2\left[2\pi x \sum_{n=2}^{\infty}{\frac{1}{(\pi x)^2-(\pi n)^2}}\right]\\ &=\pi x^2\left[-\frac{2x}{\pi(x^2-1)}-\frac{1}{\pi x}+\underbrace{\frac{1}{\pi x}+2\pi x \sum_{n=1}^{\infty}{\frac{1}{(\pi x)^2-(\pi n)^2}}}_{\cot(\pi x)}{}\right]\\ \end{align*} where $\cot(\pi x)$ is expressed using Mittag-Leffler's theorem on meromorphic functions (Look here). We finally get that $$S'(x)=-x+\left(\pi x^2\cot(\pi x)-\frac{2x^3}{x^2-1}\right)$$ By integrating, we get : $$S(x)=-\frac{x^2}2+\int_0^x\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)dt$$ For $x=1$, we get $$S(1)=-\frac{1}{2}+\int_0^1\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)dt=-\frac{1}{2}+\ln(\pi)-1=\ln(\pi)-\frac{3}{2}.$$ The integral $\int_0^1\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)dt$ was evaluated exactly via Wolframalpha.

Thanks to both Angelo and KStarGamer for their corrections and comments.

Angelo
  • 12,328
Hamdiken
  • 1,456
  • 6
  • 14
  • 1
    Hamdiken, actually, $$\cot(\pi x)=\frac1{\pi x}+2\pi x\sum_{n=1}^{\infty}\frac1{(\pi x)^2-(\pi n)^2}.$$ Hence, $$\frac{1}{\pi x}+2\pi x \sum_{n=2}^{\infty}{\frac{1}{(\pi x)^2-(\pi n)^2}}=\cot(\pi x)-\frac{2x}{\pi\left(x^2-1\right)}.$$ Could you correct it, please ? – Angelo Oct 31 '22 at 16:33
  • 1
    Moreover, $$S(x)=-\frac{x^2}2+\int_0^x\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)dt;.$$ and $$\int_0^1\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)dt=\ln(\pi)-1;.$$ Look at this: https://www.wolframalpha.com/input?i2d=true&i=Integrate%5B%5C%2840%29pi+Power%5Bx%2C2%5Dcot%5C%2840%29pi+x%5C%2841%29-Divide%5B2Power%5Bx%2C3%5D%2CPower%5Bx%2C2%5D-1%5D%5C%2841%29%2C%7Bx%2C0%2C1%7D%5D $\text{Hence, }\S(1)=-\dfrac12+\displaystyle\int_0^1\left(\pi t^2\cot(\pi t)-\dfrac{2t^3}{t^2-1}\right)dt=\ln(\pi)-\dfrac32;.$ – Angelo Oct 31 '22 at 16:54
  • 2
    To simplify the final integral, take $t\to 1-t$ then we have $$S(1)=-\frac{1}{2}+\int_{0}^{1} \left(\pi t^2 \cot(\pi t)-\frac{2t^3}{t^2-1}\right), dt=-\frac{3}{2}-\ln(2)+\int_{0}^{1} \left(\frac{1}{t} -\pi (1-t)^2\cot(\pi t)\right), dt$$ – KStarGamer Oct 31 '22 at 17:16
  • 1
    I have posted an answer that completes yours. – KStarGamer Oct 31 '22 at 18:40
8

(I have partially copied @Hamdiken's answer to make it more complete)

Define the sum $$S(x):=\sum_{n=2}^{\infty}\left(n^2\ln\left(1-\frac{x^2}{n^2}\right)+x^2\right)$$ and differentiate with respect to $x$ to obtain \begin{align*} S'(x)=\sum_{n=2}^{\infty}\left(-2x{\frac{n^2}{n^2-x^2}}+2x\right) &=2x\sum_{n=2}^{\infty}\left({\frac{n^2}{x^2-n^2}}+1\right)\\ &=2x\sum_{n=2}^{\infty}\left({\frac{n^2+x^2-n^2}{x^2-n^2}}\right)\\ &=x^2\left[2x \sum_{n=2}^{\infty}{\frac{1}{x^2-n^2}}\right]\\ &=\pi x^2\left[2\pi x \sum_{n=2}^{\infty}{\frac{1}{(\pi x)^2-(\pi n)^2}}\right]\\ &=\pi x^2\left[-\frac{2x}{\pi(x^2-1)}-\frac{1}{\pi x}+\underbrace{\frac{1}{\pi x}+2\pi x \sum_{n=1}^{\infty}{\frac{1}{(\pi x)^2-(\pi n)^2}}}_{\cot(\pi x)}{}\right]\\ \end{align*} by the Mittag-Leffler pole expansion of $\cot(\pi x)$. We finally get that $$S'(x)=-x+\left(\pi x^2\cot(\pi x)-\frac{2x^3}{x^2-1}\right)$$ Upon integrating, we determine $$S(x)=-\frac{x^2}2+\int_0^x\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)\,dt$$ For $x=1$, we get $$S(1)=-\frac{1}{2}+\int_0^1\left(\pi t^2\cot(\pi t)-\frac{2t^3}{t^2-1}\right)\,dt\stackrel{t\to 1-t}{=}-\frac{3}{2}-\ln(2)+\int_{0}^{1} \left(\frac{1}{t} -\pi (1-t)^2\cot(\pi t)\right)\, dt $$

Now by the Laurent series for $\cot(\pi x)$, namely, $$\cot(\pi x) = \frac{1}{\pi x} - \frac{2}{\pi x} \sum_{k=1}^{\infty}\zeta(2k) x^{2k}$$ we have $$S(1)=-\ln(2)+\sum_{k=1}^{\infty}\frac{\zeta(2k)}{k(k+1)(2k+1)}$$ Now since for $\Re(s)>1$ we have the following Mellin transform $$\zeta(s)\Gamma(s)=\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\,dx$$ we get $$S(1)=-\ln(2)+\int_{0}^{\infty}\frac{1}{e^x-1}\sum_{k=1}^{\infty}\frac{x^{2k-1}}{\Gamma(2k)k(k+1)(2k+1)}=-\ln(2)-2\int_{0}^{\infty}\frac{2+x^2-2\cosh(x)}{x^3(e^x-1)}\,dx$$

We shall now evaluate the integral $$I:=-2\int_{0}^{\infty}\frac{2+x^2-2\cosh(x)}{x^3(e^x-1)}\,dx$$

Write $$\frac{1}{e^x-1}=\sum_{n=1}^{\infty}e^{-nx}$$ so $$I=-2\sum_{n=1}^{\infty}\int_{0}^{\infty} \frac{e^{-n x}}{x^3}\left(2+x^2-2\cosh(x)\right)\,dx$$ Now using the convolution property of the Laplace Transform: $$\int_{0}^{\infty} f(x)\cdot g(x)\, dx=\int_{0}^{\infty} (\mathcal{L}f)(s)\cdot (\mathcal{L}^{-1}g)(s)\, ds$$ with $f(x) = e^{-nx}\left(2+x^2-2\cosh(x)\right)$ and $g(x)=\frac{-2}{x^3}$ we have $$I=\sum_{n=1}^{\infty}\int_{0}^{\infty}\frac{2 s^2}{(n+s-1) (n+s)^3 (n+s+1)}\, ds=\int_{0}^{\infty}\frac{s^2+2 s+2}{s(s+1)}+s^2 \psi ^{(2)}(s)\, ds\stackrel{\text{IBP}}{=}\ln(2\pi)-\frac{3}{2}$$ where $\psi$ is the polygamma function. So $S(1)=\ln(\pi)-\frac{3}{2}$ as required. $\square$

KStarGamer
  • 5,089
  • 1
  • 18
  • 50
  • KStarGamer, how have you obtained that $$\sum_{k=1}^{\infty}\frac{x^{2k-1}}{\Gamma(2k)k(k+1)(2k+1)}=-2\left(\frac{2+x^2-2\cosh(x)}{x^3}\right);?$$ – Angelo Oct 31 '22 at 19:46
  • @Angelo Use the Maclaurin series $$\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}=\sinh(x)$$ and integrate this three times with respect to $x$, ensuring you account for the integration constant each time by using the value at $x=0$ each time. (You'll get a factor of $\frac{1}{4}$ in the sum). – KStarGamer Oct 31 '22 at 19:53
  • KStarGamer, please, could you explain how you applied IBP in order to calculate $$\int_{0}^{\infty}\frac{s^2+2 s+2}{s(s+1)}+s^2 \psi ^{(2)}(s), ds\stackrel{\text{IBP}}{=}\ln(2\pi)-\frac{3}{2};?$$ – Angelo Oct 31 '22 at 20:19
  • @Angelo the fraction term is evaluated with partial fractions, the polygamma term is evaluated with integration by parts by integrating the polygamma term and differentiating the $s^2$ term repeatedly until you obtain the digamma function. In the limit, you just use special known values of digamma. – KStarGamer Oct 31 '22 at 20:34
  • But the integral of the fraction term is divergent, so how can you evaluate it apart from the others? – Angelo Oct 31 '22 at 20:46
  • You evaluate the limit of all of them together. More precisely, compute the indefinite integral, then take the necessary limits to $\infty$ and $0$. – KStarGamer Oct 31 '22 at 20:46
  • KStargamer, you did a great work ! Congratulations ! I have already upvoted your answer. Nevertheless, the way how Svyatoslav calculated the integral is much easier and much more elementary. He just used IBP and changes of variables, no more. – Angelo Oct 31 '22 at 21:07
6

Too long for a comment.

What is interesting is that the partial sums $$S_p=\sum_{n=2}^{p}\left (n^2 \ln\left(1-\frac{1}{n^2}\right)+1\right)$$ are given in terms of the gamma function and the derivatives of the zeta function with respect to its first argument.

$$S_p=-\log(2e)+p+\log \big(\Gamma (p)\,\Gamma (p+2)\big)+$$ $$\zeta ^{(1,0)}(-2,p)-2 \zeta ^{(1,0)}(-2,p+1)+\zeta ^{(1,0)}(-2,p+2)+2 \zeta ^{(1,0)}(-1,p)-2 \zeta ^{(1,0)}(-1,p+2)$$ Expanded as a series $$S_p=\log (\pi )-\frac{3}{2}+\frac{1}{2 p}-\frac{1}{4 p^2}+O\left(\frac{1}{p^3}\right)$$ The same happens with

$$T_p(k)=\sum_{n=2}^{\infty}\left (n^k \ln\left(1-\frac{1}{n^k}\right)+1\right)$$

5

$$\begin{align}\sum^\infty_{n=2}n^2\ln\left(1-\frac{1}{n^2}\right)+1&=\sum^\infty_{n=2}n^2\ln\left(1-\frac{1}{n^2}\right)+\ln(e)=\\&=\sum^\infty_{n=2}\ln\left(1-\frac{1}{n^2}\right)^{n^2}+\ln(e)\;.\end{align}$$ $$\begin{align}\sum^\infty_{n=2}\ln\left(1-\frac{1}{n^2}\right)^{n^2}+\ln(e)&=\sum^\infty_{n=2}\ln\left(\left(1-\frac{1}{n^2}\right)^{n^2}e\right)=\\&=\ln\prod_{n=2}^\infty\left(\frac{n^2-1}{n^2}\right)^{n^2}\!\!e\,.\end{align}$$ Prove that the input of the logarithm is equal to $\pi/e^{3/2}$ and you would be good. Use this paper to get the answer.

Angelo
  • 12,328
Kamal Saleh
  • 6,497