I'm looking for a closed-form for the following sum:
$$\sum_{n=1}^{\infty} \left(m n \, \text{arccoth} \, (m n) - 1\right)$$ for $|m|>1.$
In a previous question of mine, the following similar sum was determined:
$$\sum_{n=1}^{\infty} (-1)^n \left(m n \, \text{arccoth} \, (m n) - 1\right)=\frac{1}{2}+\frac{1}{2} \log \left|\cot\left(\frac{\pi}{2m}\right)\right|+\frac{m}{2\pi} \left(\frac{1}{2}\text{Cl}_2\left(\frac{2\pi}{m}\right)-2\text{Cl}_2\left(\frac{\pi}{m}\right)\right)$$ for $|m|>1,$ where $\text{Cl}_2$ is the Clausen function of order 2.
I determined the following closed-forms for example as mentioned in that question:
$$\sum_{n=1}^{\infty} \left( 4n \, \text{arccoth} \, (4n)-1\right) = \frac{1}{2} - \frac{G}{\pi}- \frac{1}{4} \ln (2)$$ $$\sum_{n=1}^{\infty} \left(6n \, \text{arccoth} \, (6n) - 1\right) = \frac{1}{2} - \frac{3}{2\pi} \, \text{Cl}_2 \left( \frac{\pi}{3}\right)$$ $$\sum_{n=1}^{\infty} \left( 8n \, \text{arccoth} \, (8n) - 1\right) = \frac{1}{2} - \frac{2}{\pi} \, \text{Cl}_2 \, \left(\frac{\pi}{4}\right) - \frac{1}{4} \ln (2-\sqrt{2})$$
I suspect a similar method to that used by @skbmoore involving the Barnes G function might be applicable. Any help would be much appreciated.
Here is my attempt:
$$S(m) := \sum_{n=1}^{\infty} \left(m n \, \text{arccoth} \, (m n) - 1\right) = \frac{m}{2} \log \left( \prod_{n=1}^{\infty} \frac{1}{e} \left(\frac{1+1/(m n)}{1-1/(m n)}\right)^{n}\right)\\ = \frac{1}{2} + \frac{m}{2} \zeta' \left(-1,1-\frac{1}{m}\right)-\frac{m}{2}\zeta' \left(-1,1+\frac{1}{m}\right)+\frac{1}{2} \zeta' \left(0,1-\frac{1}{m}\right)+\frac{1}{2} \zeta' \left(0,1+\frac{1}{m}\right) \\ =\frac{1}{2} + \frac{m}{2} \left(\zeta' \left(-1,1-\frac{1}{m}\right)-\zeta' \left(-1,1+\frac{1}{m}\right)\right) \\+ \frac{1}{2} \ln\left( \Gamma \left(1-\frac{1}{m}\right)\Gamma \left(1+\frac{1}{m}\right)\right) - \frac{1}{2}\ln (2\pi) \\=\frac{1}{2} + \frac{m}{2} \left(\zeta' \left(-1,1-\frac{1}{m}\right)-\zeta' \left(-1,1+\frac{1}{m}\right)\right) + \frac{1}{2} \ln\left( \frac{\pi}{m} \csc \left(\frac{\pi}{m}\right)\right) - \frac{1}{2}\ln (2\pi)$$
However, I would like to write the solution in terms of the Clausen function if possible, like in the alternating sum, but I cannot see how to do that.