Let
$$S\left( m \right)=\sum\limits_{n=1}^{\infty }{{{\left( -1 \right)}^{n}}\left( mn\operatorname{arcoth}\left( mn \right)-1 \right)},\,\,\left| m \right|>1$$
And note the logarithmic representation of the inverse function
$$\operatorname{arcoth}\left( z \right)=\frac{1}{2}\log \left( \frac{z+1}{z-1} \right)$$
The series can therefore be written as
$$S\left( m \right)=\sum\limits_{n=1}^{\infty }{\left( \log \left( \frac{1}{{{e}^{{{\left( -1 \right)}^{n}}}}}{{\left( \frac{nm+1}{nm-1} \right)}^{\frac{1}{2}{{\left( -1 \right)}^{n}}nm}} \right) \right)}=\log \left( \prod\limits_{n=1}^{\infty }{\frac{1}{{{e}^{{{\left( -1 \right)}^{n}}}}}{{\left( \frac{nm+{{\left( -1 \right)}^{n}}}{nm-{{\left( -1 \right)}^{n}}} \right)}^{\frac{1}{2}nm}}} \right)$$
Breaking the product into two convergent products consider then
$${{e}^{S}}=\prod\limits_{n=1}^{\infty }{\frac{1}{e}{{\left( \frac{2nm+1}{2nm-1} \right)}^{nm}}}\prod\limits_{n=1}^{\infty }{e{{\left( \frac{\left( 2n-1 \right)m-1}{\left( 2n-1 \right)m+1} \right)}^{\frac{1}{2}\left( 2n-1 \right)m}}}={{p}_{1}}\left( m \right){{p}_{2}}\left( m \right)$$
The first of these is
$${{p}_{1}}\left( m \right)=\prod\limits_{n=1}^{\infty }{\frac{1}{e}\frac{{{\left( 1+\frac{1}{2nm} \right)}^{nm}}}{{{\left( 1-\frac{1}{2nm} \right)}^{nm}}}}$$
However for the moment note that to ensure the convergence of
$${{p}_{a}}\left( m \right)=\prod\limits_{n=1}^{\infty }{{{\left( 1+\frac{1}{2nm} \right)}^{nm}}a}$$
we must consider the convergence of
$$\log {{p}_{a}}\left( m \right)=\sum\limits_{n=1}^{\infty }{nm\log \left( 1+\frac{1}{2nm} \right)+\log \left( a \right)}$$
For large n the summand behaves
$$nm\log \left( 1+\frac{1}{2nm} \right)+\log \left( a \right)\simeq \frac{1}{2}+\log \left( a \right)-\frac{1}{8mn}+O\left( {{n}^{-2}} \right)$$
so let $a={{e}^{\frac{1}{8mn}-\frac{1}{2}}}$. The product can now be written in the following manner
$${{p}_{1}}\left( m \right)=\prod\limits_{n=1}^{\infty }{\frac{{{\left( 1+\frac{1}{2nm} \right)}^{nm}}{{e}^{-\frac{1}{2}+\frac{1}{8mn}}}}{{{\left( 1-\frac{1}{2nm} \right)}^{nm}}{{e}^{\frac{1}{2}+\frac{1}{8mn}}}}}=\frac{\prod\limits_{n=1}^{\infty }{{{\left( 1+\frac{1}{2nm} \right)}^{nm}}{{e}^{-\frac{1}{2}+\frac{1}{8mn}}}}}{\prod\limits_{n=1}^{\infty }{{{\left( 1-\frac{1}{2nm} \right)}^{nm}}{{e}^{\frac{1}{2}+\frac{1}{8mn}}}}}$$
Therefore consider now
$${{p}_{1\pm }}=\prod\limits_{n=1}^{\infty }{{{\left( 1\pm \frac{1}{2nm} \right)}^{nm}}{{e}^{\mp \frac{1}{2}+\frac{1}{8mn}}}}$$
or alternatively
$$\log {{p}_{1\pm }}=\sum\limits_{n=1}^{\infty }{nm\log \left( 1\pm \frac{1}{2nm} \right)}\mp \frac{1}{2}+\frac{1}{8mn}$$
Using the series representation for the logarithm
$$\log {{p}_{1+}}=\sum\limits_{n=1}^{\infty }{nm\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k+3}}}{\left( k+2 \right){{\left( 2nm \right)}^{k+2}}}}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}$$
$$\log {{p}_{1-}}=-\sum\limits_{n=1}^{\infty }{nm\sum\limits_{k=3}^{\infty }{\frac{1}{k{{\left( 2nm \right)}^{k}}}}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}$$
From Srivastava [pg. 257, (63)] the following series takes the form
$$\begin{align}\sum\limits_{k=2}^{\infty }{\frac{\zeta \left( k,a \right)}{k+n}{{x}^{k+n}}}&=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right)\zeta '\left( -k,a-x \right){{x}^{n-k}}}-\sum\limits_{k=0}^{n-1}{\frac{\zeta \left( -k,a \right)}{n-k}{{x}^{n-k}}}\\&+\left\{ \psi \left( a \right)-{{H}_{n}} \right\}\frac{{{x}^{n+1}}}{n+1}-\zeta '\left( -n,a \right),\ \ \left| x \right|<\left| a \right|,\,\,n=0,1,2...\end{align}$$
where $\zeta '\left( s,a \right)=\frac{\partial }{\partial s}\zeta \left( s,a \right)$ . Hence
$$\sum\limits_{k=1}^{\infty }{\frac{\zeta \left( k+1 \right)}{k+2}{{x}^{k+1}}}=\frac{1}{x}\left\{ \zeta '\left( 0,1-x \right)x+\zeta '\left( -1,1-x \right)+\frac{1}{2}\left( x-{{x}^{2}} \right)-\tfrac{1}{2}\gamma {{x}^{2}}-\zeta '\left( -1 \right) \right\}$$
We have then
$$\log {{p}_{-}}\left( m \right)=-\frac{1}{2}\zeta '\left( 0,1-\frac{1}{2m} \right)-m\zeta '\left( -1,1-\frac{1}{2m} \right)-\frac{1}{4}\left( 1-\frac{\gamma +1}{2m} \right)+m\zeta '\left( -1 \right)$$
$$\log {{p}_{+}}\left( m \right)=\frac{1}{2}\zeta '\left( 0,1+\frac{1}{2m} \right)-m\zeta '\left( -1,1+\frac{1}{2m} \right)+\frac{1}{4}\left( 1+\frac{1+\gamma }{2m} \right)+m\zeta '\left( -1 \right)$$
Continuing, recall
$${{p}_{2}}\left( m \right)=\prod\limits_{n=1}^{\infty }{e\frac{{{\left( 1-\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}}{{{\left( 1+\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}}}$$
and so for a moment consider the convergence of the product
$${{q}_{a}}=\prod\limits_{n=1}^{\infty }{{{\left( 1-\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}a}\Rightarrow a={{e}^{\frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}$$
Therefore re-write the product
$$\begin{align}{{p}_{2}}\left( m \right)&=\prod\limits_{n=1}^{\infty }{\frac{{{\left( 1-\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}{{e}^{\frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}}{{{\left( 1+\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}{{e}^{-\frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}}}\\&=\frac{\prod\limits_{n=1}^{\infty }{{{\left( 1-\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}{{e}^{\frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}}}{\prod\limits_{n=1}^{\infty }{{{\left( 1+\frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}{{e}^{-\frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}}}\end{align}$$
Consider then the products and their log transforms
$${{p}_{2\pm }}=\prod\limits_{n=1}^{\infty }{{{\left( 1\pm \frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)}^{m\left( n-\tfrac{1}{2} \right)}}{{e}^{\mp \frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}}}$$
$$\log {{p}_{2\pm }}=\sum\limits_{n=1}^{\infty }{2m\left( n-\tfrac{1}{2} \right)\log \left( 1\pm \frac{1}{2m\left( n-\tfrac{1}{2} \right)} \right)\mp \frac{1}{2}+\frac{1}{8m\left( n-\tfrac{1}{2} \right)}}$$
Taking each case separately and expanding the logarithm in its series
$$\log {{p}_{2+}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k}}}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}\sum\limits_{n=1}^{\infty }{\frac{1}{{{\left( n-\tfrac{1}{2} \right)}^{k+1}}}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\left( -1+{{2}^{k+1}} \right)\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}$$
$$\log {{p}_{2-}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{1}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}\sum\limits_{n=1}^{\infty }{\frac{1}{{{\left( n-\tfrac{1}{2} \right)}^{k+1}}}}=-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{\left( -1+{{2}^{k+1}} \right)\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}$$
So
$$\log {{p}_{2+}}=\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\zeta \left( k+1 \right)}{\left( k+2 \right){{m}^{k+1}}}}=-\log {{p}_{1+}}\left( m \right)+\log {{p}_{1+}}\left( \tfrac{1}{2}m \right)$$
$$\log {{p}_{2-}}=\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{\zeta \left( k+1 \right)}{\left( k+2 \right){{\left( 2m \right)}^{k+1}}}}-\frac{1}{2}\sum\limits_{k=1}^{\infty }{\frac{\zeta \left( k+1 \right)}{\left( k+2 \right){{m}^{k+1}}}}=-\log {{p}_{1-}}\left( m \right)+\log {{p}_{1-}}\left( \tfrac{1}{2}m \right)$$
Therefore
$${{p}_{2}}\left( m \right)=\frac{{{e}^{-\log {{p}_{1-}}\left( m \right)+\log {{p}_{1-}}\left( \tfrac{1}{2}m \right)}}}{{{e}^{-\log {{p}_{1+}}\left( m \right)+\log {{p}_{1+}}\left( \tfrac{1}{2}m \right)}}}$$
The final product is
$${{e}^{S}}={{p}_{1}}\left( m \right){{p}_{2}}\left( m \right)={{e}^{2\log {{p}_{1+}}\left( m \right)-2\log {{p}_{1-}}\left( m \right)+\log {{p}_{1-}}\left( \tfrac{1}{2}m \right)-\log {{p}_{1+}}\left( \tfrac{1}{2}m \right)}}$$
and so the series becomes
$$S=2\left\{ \log {{p}_{1+}}\left( m \right)-\log {{p}_{1-}}\left( m \right) \right\}+\log {{p}_{1-}}\left( \tfrac{1}{2}m \right)-\log {{p}_{1+}}\left( \tfrac{1}{2}m \right)$$
Substitution of previous results yields
$$\begin{align}
S&=\zeta '\left( 0,1+\frac{1}{2m} \right)+\zeta '\left( 0,1-\frac{1}{2m} \right)-\frac{1}{2}\zeta '\left( 0,1-\frac{1}{m} \right)-\frac{1}{2}\zeta '\left( 0,1+\frac{1}{m} \right) \\
& -2m\zeta '\left( -1,1+\frac{1}{2m} \right)+2m\zeta '\left( -1,1-\frac{1}{2m} \right)-\frac{1}{2}m\zeta '\left( -1,1-\frac{1}{m} \right)\\&+\frac{1}{2}m\zeta '\left( -1,1+\frac{1}{m} \right)+\frac{1}{2} \\
\end{align}$$
Note: $\zeta '\left( 0,a \right)=\log \left( \Gamma \left( a \right) \right)-\tfrac{1}{2}\log \left( 2\pi \right)$, to obtain
$$\begin{align}
S\left( m \right)&=\log \left( \frac{\Gamma \left( 1+\frac{1}{2m} \right)\Gamma \left( 1-\frac{1}{2m} \right)}{\sqrt{2\pi \Gamma \left( 1+\frac{1}{m} \right)\Gamma \left( 1-\frac{1}{m} \right)}} \right) \\
&+2m\left\{ \zeta '\left( -1,1-\frac{1}{2m} \right)-\zeta '\left( -1,1+\frac{1}{2m} \right) \right\}\\&+\frac{1}{2}m\left\{ \zeta '\left( -1,1+\frac{1}{m} \right)-\zeta '\left( -1,1-\frac{1}{m} \right) \right\}+\frac{1}{2} \\
\end{align}$$
Now fix m as a positive integer greater than one. Note also
$\zeta \left( s,a+1 \right)=\zeta \left( s,a \right)-{{a}^{-s}}$ so $\zeta '\left( s,a+1 \right)=\zeta '\left( s,a \right)+{{a}^{-s}}\log \left( a \right)$
and DLMF 25.11.21
$$\begin{align}
\zeta '\left( -1,\frac{h}{k} \right)&=\frac{\left( 1-\gamma -\ln \left( 2\pi k \right) \right)\left( \tfrac{1}{6}-\tfrac{h}{k}+{{\left( \tfrac{h}{k} \right)}^{2}} \right)}{2}-\frac{\left( 1-\gamma -\ln \left( 2\pi \right) \right)}{12{{k}^{2}}} \\
&+\frac{1}{4\pi {{k}^{2}}}\sum\limits_{r=1}^{k-1}{\sin \left( \frac{2\pi rh}{k} \right){{\psi }^{\left( 1 \right)}}\left( \frac{r}{k} \right)}+\frac{1}{2{{\pi }^{2}}{{k}^{2}}}\sum\limits_{r=1}^{k-1}{\cos \left( \frac{2\pi rh}{k} \right)\zeta '\left( 2,\frac{r}{k} \right)}\\&+\frac{1}{{{k}^{2}}}\zeta '\left( -1 \right) \\
\end{align}$$
From this, finally:
$$\begin{align}
S\left( m \right)&=\frac{1}{2}+\log \left( \frac{\sqrt{2m}\Gamma \left( 1+\frac{1}{2m} \right)\Gamma \left( 1-\frac{1}{2m} \right)}{\sqrt{\pi \Gamma \left( 1+\frac{1}{m} \right)\Gamma \left( 1-\frac{1}{m} \right)}} \right)\\&+\frac{1}{4\pi m}\sum\limits_{r=1}^{m-1}{\sin \left( \frac{2\pi r}{m} \right){{\psi }^{\left( 1 \right)}}\left( \frac{r}{m} \right)}-\frac{1}{4\pi m}\sum\limits_{r=1}^{2m-1}{\sin \left( \frac{\pi r}{m} \right){{\psi }^{\left( 1 \right)}}\left( \frac{r}{2m} \right)}\end{align}$$
Simple example: m=2
$$S\left( 2 \right)=\frac{1}{2}+\log \left( \frac{2\sqrt{2}\Gamma \left( \frac{5}{4} \right)\Gamma \left( \frac{3}{4} \right)}{\pi } \right)-\frac{1}{8\pi }\left\{ {{\psi }^{\left( 1 \right)}}\left( \frac{1}{4} \right)-{{\psi }^{\left( 1 \right)}}\left( \frac{3}{4} \right) \right\}$$
Simplifying
$$S\left( 2 \right)=\frac{1}{2}-\frac{1}{8\pi }\left\{ {{\psi }^{\left( 1 \right)}}\left( \frac{1}{4} \right)-{{\psi }^{\left( 1 \right)}}\left( \frac{3}{4} \right) \right\}=\frac{1}{2}-\frac{2G}{\pi }$$
where G is Catalan’s constant.
References:
Srivastava, H. M., Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals (Elsevier 2012)