4

Using the methods of projective geometry, identify the unique ellipse that is inscribed in a given convex pentagon.

Suppose the vertices of the pentagon are: $(1, 0), (4, 2), (3, 6), (-1, 5), (-1, 1)$. Find the equation of the unique inscribed ellipse that is tangent to all five sides of this convex pentagon.

enter image description here

Hosam Hajeer
  • 21,978
  • I don't understand what this means. I would appreciate if you could expand this comment and elaborate on it, if you have the time, and make it an answer, for me, and for the interest of this particular problem. – Hosam Hajeer Aug 25 '22 at 06:21
  • The way I solved this problem was the direct approach, where I specified the unknown ellipse using it equation $(r - C)^T Q (r - C) = 1 $, then iteratively found $Q$ and $C$ using the constraints of tangency on the five sides of the pentagon. – Hosam Hajeer Aug 25 '22 at 06:26
  • Anoter way would be to use Brianchon's theorem like in this answer. – Jean Marie Aug 25 '22 at 06:38

2 Answers2

5

It's easier to find the dual conic first.

Rewrite every tangents in the form:

$$X_i x+Y_i y+1=0$$

Then $(X_i,Y_i)$ are the five points defining the dual conic:

$$ \begin{align} 0 &= \det \begin{pmatrix} X^2 & XY & Y^2 & X & Y & 1 \\ X_1^2 & X_1 Y_1 & Y_1^2 & X_1 & Y_1 & 1 \\ \vdots & & & & & \vdots \\ X_5^2 & X_5 Y_5 & Y_5^2 & X_5 & Y_5 & 1 \\ \end{pmatrix} \\ \\ &= AX^2+2HXY+BY^2+2GX+2FY+C \\ \end{align}$$

The required ellipse is

$$ \begin{align} 0 &= -\det \begin{pmatrix} 0 & x & y & 1 \\ x & A & H & G \\ y & H & B & F \\ 1 & G & F & C \\ \end{pmatrix} \\ \\ &= ax^2+2hxy+by^2+2gx+2fy+c \end{align}$$

Note that $a$ is the co-factor of entry $A$ of the $3\times 3$ block matrix, etc.

For the vertical tangent, try to let $Y_i=N$ and only the terms with highest order in $N$ survive.

See also the case of quadrilateral here.

Ng Chung Tak
  • 18,990
4

Idea - see picture. Find five points - lines with points intersection of diagonals and $A,B,C,D,E$ give tangent points. Answer: $$\frac{-435}{764}x^2+\frac{75}{382}xy-\frac{3481}{8404}y^2+\frac{165}{191} x+\frac{421}{191}y-1=0$$

enter image description here

Solution with Python

from math import isclose
from sympy import *

a,b,c,d,h=symbols('a,b,c,d,h')

A=Point(1,0) B=Point(4,2) C=Point(3,6) D=Point(-1,5) E=Point(-1,1)

print(A,B,C,D,E) def PE(A,B,C,D,E): AD = Line(A, D) EB = Line(E, B) H = EB.intersection(AD)[0] CH = Line(C, H) EA = Line(E, A) J = CH.intersection(EA)[0] return(J)

def eq_ellipse(x,y): return(xxa+xyb+yyc+dx+hy-1)

Q1=PE(A,B,C,D,E) Q2=PE(B,C,D,E,A) Q3=PE(C,D,E,A,B) Q4=PE(D,E,A,B,C) Q5=PE(E,A,B,C,D) print(Q1,Q2,Q3,Q4,Q5) (x1,y1)=Q1 (x2,y2)=Q2 (x3,y3)=Q3 (x4,y4)=Q4 (x5,y5)=Q5 print(x11.,y11.) print(x21.,y21.) print(x31.,y31.) print(x41.,y41.) print(x51.,y51.)

#equation= x1x1a+x1y1b+cy1y1+dx1+hy1=1 eq1= eq_ellipse(x1,y1) eq2= eq_ellipse(x2,y2) eq3= eq_ellipse(x3,y3) eq4= eq_ellipse(x4,y4) eq5= eq_ellipse(x5,y5)

answ=solve([eq1,eq2,eq3,eq4,eq5],(a,b,c,d,h)) print(answ) print('a=', a.subs(answ).n()) print('b=', b.subs(answ).n()) print('c=', c.subs(answ).n()) print('d=', d.subs(answ).n()) print('h=', h.subs(answ).n())

major=-sqrt(2(ahh+cdd-bdh-(bb-4ac))(a+c+sqrt((a-c)2+bb)))/(bb-4ac) minor=-sqrt(2(ahh+cdd-bdh-(bb-4ac))(a+c-sqrt((a-c)*2+bb)))/(bb-4a*c)

major=major.subs(answ) minor=minor.subs(answ) print('major=', major) print('minor=', minor)

print(major.n()) print(minor.n())

print(latex(major)) print(latex(minor))

Point2D(1, 0) Point2D(4, 2) Point2D(3, 6) Point2D(-1, 5) Point2D(-1, 1) Point2D(1/23, 11/23) Point2D(64/31, 22/31) Point2D(128/37, 154/37) Point2D(337/271, 1507/271) Point2D(-1, 143/59) 0.0434782608695652 0.478260869565217 2.06451612903226 0.709677419354839 3.45945945945946 4.16216216216216 1.24354243542435 5.56088560885609 -1.00000000000000 2.42372881355932 {a: -435/764, b: 75/382, c: -3481/8404, d: 165/191, h: 421/191} a= -0.569371727748691 b= 0.196335078534031 c= -0.414207520228463 d= 0.863874345549738 h= 2.20418848167539 major= 401291sqrt(806022722925/161034466681 - 195021225sqrt(1105729)/161034466681)/363090 minor= 401291sqrt(195021225sqrt(1105729)/161034466681 + 806022722925/161034466681)/363090 2.13503582316532 2.76937406008801 \frac{401291 \sqrt{\frac{806022722925}{161034466681} - \frac{195021225 \sqrt{1105729}}{161034466681}}}{363090} \frac{401291 \sqrt{\frac{195021225 \sqrt{1105729}}{161034466681} + \frac{806022722925}{161034466681}}}{363090}

Yu Ka
  • 41
  • What justifies this construction ? – Jean Marie Mar 17 '23 at 15:45
  • 1
    @JeanMarie Brianchon'sTheorem. If $ABCDE$ is a convex pentagon and $F$ is the point of tangency of the inscribed ellipse on $\overline{AE}$, then $ABCDEF$ acts as a hexagon to which the theorem is applied. Thereby $F$ must be collinear with $C$ and the intersection of $\overline{AD}$ with $\overline{BE}$. The entire diagram is obtained by this method with cyclically permuting the labels $A$ through $E$. – Oscar Lanzi May 20 '23 at 01:21
  • @Oscar Lanzi Thank you very much. It's very clear now ! – Jean Marie May 20 '23 at 05:34