Idea - see picture. Find five points - lines with points intersection of diagonals and $A,B,C,D,E$ give tangent points.
Answer:
$$\frac{-435}{764}x^2+\frac{75}{382}xy-\frac{3481}{8404}y^2+\frac{165}{191} x+\frac{421}{191}y-1=0$$

Solution with Python
from math import isclose
from sympy import *
a,b,c,d,h=symbols('a,b,c,d,h')
A=Point(1,0)
B=Point(4,2)
C=Point(3,6)
D=Point(-1,5)
E=Point(-1,1)
print(A,B,C,D,E)
def PE(A,B,C,D,E):
AD = Line(A, D)
EB = Line(E, B)
H = EB.intersection(AD)[0]
CH = Line(C, H)
EA = Line(E, A)
J = CH.intersection(EA)[0]
return(J)
def eq_ellipse(x,y):
return(xxa+xyb+yyc+dx+hy-1)
Q1=PE(A,B,C,D,E)
Q2=PE(B,C,D,E,A)
Q3=PE(C,D,E,A,B)
Q4=PE(D,E,A,B,C)
Q5=PE(E,A,B,C,D)
print(Q1,Q2,Q3,Q4,Q5)
(x1,y1)=Q1
(x2,y2)=Q2
(x3,y3)=Q3
(x4,y4)=Q4
(x5,y5)=Q5
print(x11.,y11.)
print(x21.,y21.)
print(x31.,y31.)
print(x41.,y41.)
print(x51.,y51.)
#equation= x1x1a+x1y1b+cy1y1+dx1+hy1=1
eq1= eq_ellipse(x1,y1)
eq2= eq_ellipse(x2,y2)
eq3= eq_ellipse(x3,y3)
eq4= eq_ellipse(x4,y4)
eq5= eq_ellipse(x5,y5)
answ=solve([eq1,eq2,eq3,eq4,eq5],(a,b,c,d,h))
print(answ)
print('a=', a.subs(answ).n())
print('b=', b.subs(answ).n())
print('c=', c.subs(answ).n())
print('d=', d.subs(answ).n())
print('h=', h.subs(answ).n())
major=-sqrt(2(ahh+cdd-bdh-(bb-4ac))(a+c+sqrt((a-c)2+bb)))/(bb-4ac)
minor=-sqrt(2(ahh+cdd-bdh-(bb-4ac))(a+c-sqrt((a-c)*2+bb)))/(bb-4a*c)
major=major.subs(answ)
minor=minor.subs(answ)
print('major=', major)
print('minor=', minor)
print(major.n())
print(minor.n())
print(latex(major))
print(latex(minor))
Point2D(1, 0) Point2D(4, 2) Point2D(3, 6) Point2D(-1, 5) Point2D(-1, 1)
Point2D(1/23, 11/23) Point2D(64/31, 22/31) Point2D(128/37, 154/37) Point2D(337/271, 1507/271) Point2D(-1, 143/59)
0.0434782608695652 0.478260869565217
2.06451612903226 0.709677419354839
3.45945945945946 4.16216216216216
1.24354243542435 5.56088560885609
-1.00000000000000 2.42372881355932
{a: -435/764, b: 75/382, c: -3481/8404, d: 165/191, h: 421/191}
a= -0.569371727748691
b= 0.196335078534031
c= -0.414207520228463
d= 0.863874345549738
h= 2.20418848167539
major= 401291sqrt(806022722925/161034466681 - 195021225sqrt(1105729)/161034466681)/363090
minor= 401291sqrt(195021225sqrt(1105729)/161034466681 + 806022722925/161034466681)/363090
2.13503582316532
2.76937406008801
\frac{401291 \sqrt{\frac{806022722925}{161034466681} - \frac{195021225 \sqrt{1105729}}{161034466681}}}{363090}
\frac{401291 \sqrt{\frac{195021225 \sqrt{1105729}}{161034466681} + \frac{806022722925}{161034466681}}}{363090}