8

Detailed derivations on this formula:

There is an exercise problem (Ex. 3.2) in Olver's book, on page 292. (or you can find it on this website: Eq.2.10.7).

$$\sum_{j=1}^{n-1}j^a \sim \zeta(-a)+\frac{n^{a+1}}{a+1}\sum_{s=0}^\infty \binom{a+1}{s}\frac{B_s}{n^s} \tag{*}$$

I try to derive it. I begin with:

$$\sum_{j=n_0}^n f(j)=\int_{n_0}^n f(x) dx+\frac{f(n_0)+f(n)}{2}+\sum_{s=1}^{m-1}\frac{B_{2s}}{(2s)!}\left( f^{(2s-1)}(n)-f^{(2s-1)}(n_0) \right)+R_m(n) $$

let $n_0=1$ and $f(x)=x^a$, for left-hand-side:

$$\sum_{j=n_0}^n f(j)=\sum_{j=1}^n j^a$$

for right-hand-side:

$$\begin{align} \int_{n_0}^n f(x) dx&=\int_1^n x^a dx=\frac{1}{a+1}x^{a+1}|_1^n=\frac{n^{a+1}}{a+1}-\frac{1}{a+1}\tag{1}\\ \\ \frac{f(n_0)+f(n)}{2}&=\frac{f(1)+f(n)}{2}=\frac{1+n^a}{2}\tag{2}\\ \\ f^{(2s-1)}(x)&=a(a-1)...(a-2s+2)x^{a-2s+1}=\frac{a!}{(a-2s+1)!}x^{a-2s+1}\\ \\ f^{(2s-1)}(n)&=\frac{a!}{(a-2s+1)!}n^{a-2s+1}\\ \\ f^{(2s-1)}(n_0)&=f^{(2s-1)}(1)=\frac{a!}{(a-2s+1)!} \end{align}$$

$$\begin{align} \sum_{s=1}^{m-1}\frac{B_{2s}}{(2s)!}\left( f^{(2s-1)}(n)-f^{(2s-1)}(n_0) \right)&=\sum_{s=1}^{m-1}\frac{B_{2s}}{(2s)!}\frac{a!}{(a-2s+1)!}\left(n^{a-2s+1}-1\right)\\ \\ &=\frac{1}{a+1}\sum_{s=1}^{m-1}\frac{B_{2s}}{(2s)!}\frac{(a+1)!}{(a-2s+1)!}\left(n^{a-2s+1}-1\right)\\ \\ &=\frac{1}{a+1} \sum_{s=1}^{m-1}B_{2s}\binom{a+1}{2s }\left(n^{a-2s+1}-1\right) \end{align}$$

Next, substitute: $s'=2s$ and use the fact $B_{2k+1}=0$ for $k=1,2,3,...$

$$\begin{align} \sum_{s=1}^{m-1}\frac{B_{2s}}{(2s)!}\left( f^{(2s-1)}(n)-f^{(2s-1)}(n_0) \right)&=\frac{1}{a+1} \sum_{s'=2}^{2m-2}B_{s'}\binom{a+1}{s'}\left(n^{a-s'+1}-1\right)\\ \\ &=\frac{n^{a+1}}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}\frac{B_{s'}}{n^{s'}}-\frac{1}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}B_{s'}\tag{3} \end{align}$$

Combine $(1)(2)(3)$,

$$\begin{align} \sum_{j=1}^n j^a&=\frac{n^{a+1}}{a+1}-\frac{1}{a+1}+ \frac{1+n^a}{2}+\frac{n^{a+1}}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}\frac{B_{s'}}{n^{s'}}-\frac{1}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}B_{s'}+R_m(n)\\ \\ \sum_{j=1}^n j^a&=n^a+\frac{n^{a+1}}{a+1}-\frac{n^a}{2}+\frac{n^{a+1}}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}\frac{B_{s'}}{n^{s'}}\\ &~~~~~~~~~-\frac{1}{a+1}+\frac{1}{2}-\frac{1}{a+1} \sum_{s'=2}^{2m-2}\binom{a+1}{s'}B_{s'}+R_m(n)\\ \end{align}$$

Use the fact $B_0=1,~B_1=-\frac{1}{2}$:

$$\begin{align} \sum_{j=1}^n j^a=n^a+\frac{n^{a+1}}{a+1}\sum_{s'=0}^{2m-2}\binom{a+1}{s'}\frac{B_{s'}}{n^{s'}}-\frac{1}{a+1}\sum_{s'=0}^{2m-2}\binom{a+1}{s'}B_{s'}+R_m(n)\tag{4} \end{align}$$

The remainder becomes:

$$\begin{align} R_m(n)&=\int_{n_0}^n \frac{B_{2m}-B_{2m}(x-\lfloor x\rfloor)}{(2m)!}f^{(2m)}(x)dx\\ \\ &=\color{red}{\int_{n_0}^\infty \frac{B_{2m}-B_{2m}(x-\lfloor x\rfloor)}{(2m)!}f^{(2m)}(x)dx}\color{blue}{-\int_{n}^\infty \frac{B_{2m}-B_{2m}(x-\lfloor x\rfloor)}{(2m)!}f^{(2m)}(x)dx}\tag{5}\end{align}$$

where $$f^{(2m)}(x)=a(a-1)...(a-2m+1)x^{a-2m}=\frac{a!}{(a-2m)!}x^{a-2m}$$

Since $|B_{2m}-B_{2m}(x-\lfloor x\rfloor)|\le 2|B_{2m}|$, the $\color{blue}{\text{blue-colored term}}$ is bounded by

$$\begin{align}\left|-\int_{n}^\infty \frac{B_{2m}-B_{2m}(x-\lfloor x\rfloor)}{(2m)!}f^{(2m)}(x)dx\right|&\le 2|B_{2m}|\int_{n}^\infty \frac{1}{(2m)!}|f^{(2m)}(x)|dx\\ \\ &=\left|\frac{2B_{2m}}{(2m)!}\cdot\frac{a!}{(a-2m)!}\cdot \frac{-1}{a-2m+1}\cdot n^{a-2m+1}\right|\\ \\ &=\left|\frac{2B_{2m}}{a+1}\cdot\binom{a+1}{2m}\right|\cdot \frac{n^{a+1}}{n^{2m}}\\ \\ &=\mathcal{O}\left( \frac{n^{a+1}}{n^{2m}}\right)\tag{6}\end{align}$$

The $\color{red}{\text{red-colored term}}$ becomes

$$ \begin{align} \int_{n_0}^\infty \frac{B_{2m}-B_{2m}(x-\lfloor x\rfloor)}{(2m)!}f^{(2m)}(x)dx&=\frac{B_{2m}}{(2m)!}f^{(2m-1)}(x)\bigg|_{n_0}^\infty-\frac1{(2m)!}\sum_{k=n_0}^\infty\int_{k}^{k+1} B_{2m}(x-k)f^{(2m)}(x)dx\\ \\ &=-\frac{B_{2m}}{(2m)!}f^{(2m-1)}(n_0)-\frac{1}{(2m)!}\sum_{k=n_0}^\infty I_{k,2m}\tag{7} \end{align}$$

where

$$I_{k,p}=\int_{k}^{k+1} B_{p}(x-k)f^{(p)}(x)dx$$

perform the integration by part, and we get

$$I_{k,p}=B_p(1)f^{(p-1)}(k+1)-B_p(0)f^{(p-1)}(k)-\int_{k}^{k+1} B'_{p}(x-k)f^{(p-1)}(x)dx$$

Use the property: $B'_s(t)=s\cdot B_{s-1}(t),~~s=1,2,3,\dots$, we get recursive equation

$$I_{k,p}=B_p(1)f^{(p-1)}(k+1)-B_p(0)f^{(p-1)}(k)-p\cdot I_{k,p-1}\tag{8}$$

Note the following properties between Bernoulli polynomial and Bernoulli number:

$$B_p(1)=B_{p}(0)=B_p,~~p=2,3,\dots~~~~~\text{But}~~~~B_1(1)=-B_1=\frac12,~~ B_1(0)=B_1=-\frac12$$

hence, we need to deal with the $p=1$ cases separately. Then, eq.(8) becomes

$$I_{k,p}=B_p\cdot\left[f^{(p-1)}(k+1)-f^{(p-1)}(k)\right]-p\cdot I_{k,p-1},~~~~p=2,3,\dots\tag{9}$$

Evaluate eq.(9) recursively and we get

$$I_{k,p}=\sum_{i=2}^p (-1)^{p-i}\cdot \frac{p!}{i!}\cdot B_i\cdot\left[f^{(i-1)}(k+1)-f^{(i-1)}(k)\right]+(-1)^{p-1}\cdot p!\cdot I_{k,1},~~p\ge2\tag{10}$$

Not done yet, I will update it later.

Not done yet, I will update it later.

Not done yet, I will update it later.

MathFail
  • 21,128
  • The cited initial formula can be shown to be exact for $a$ a non-negative integer. – Marko Riedel Jul 17 '22 at 01:50
  • Do you mean this one? $\sum_{j=1}^{n-1}j^a \sim \zeta(-a)+\frac{n^{a+1}}{a+1}\sum_{s=0}^\infty \binom{a+1}{s}\frac{B_s}{n^s}$ But it uses "$\sim$", not "$=$". @MarkoRiedel – MathFail Jul 17 '22 at 01:57
  • 1
    Yes this is the one. The series is finite when $a$ is a non-negative integer and can be evaluated and simplified to get the sum. Your source has $a\ne -1$ being a real number, however. – Marko Riedel Jul 17 '22 at 02:03
  • But I couldn't find the $\zeta(-a)$ term in my calculation. Do I begin with the wrong formula in the very first step? @MarkoRiedel – MathFail Jul 17 '22 at 02:12
  • Ok, I edit it, thank you! @metamorphy – MathFail Jul 17 '22 at 12:22
  • 1
    @MathFail Did I answer your question? – Gary Jul 20 '22 at 04:23
  • @Gary Thank you! I am trying to repeat your work and I still need some time to derive that term. Please correct me if I am wrong: the $\zeta(-a)$ term comes from the remainder $R_m(n)=\int_1^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left{ t \right})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt}$ – MathFail Jul 20 '22 at 17:05
  • 1
    @MathFail The remainder was decomposed into the difference of two integrals one of which does not depend on $n$. That is the one you wrote, but it is not $R_m(n)$ anymore. The zeta term comes from this part plus the $n$-independent terms, i.e., the last line I got after manipulating the Euler-Maclaurin formula, as I mentioned in my answer. – Gary Jul 20 '22 at 19:38
  • 1
    It is not $B_{2m} \cdot (x-[x])$ but $B_{2m}(x-[x])$, where $B_m(z)$ is the Bernoulli polynomial. – Gary Jul 21 '22 at 03:00
  • @Gary Thank you! and I have updated my post. I got the $\zeta(2m-a-1)$ now from the remainder. Do I need to use $\frac{B_{2m}}{(2m)!}=(-1)^{m-1}\frac{2\zeta(2m)}{(2\pi)^{2m}}$, and take the limit $m\to\infty$ ? I don't know how to evaluate this limit and convert the $\zeta(2m-a-1)$ to $\zeta(-a)$... – MathFail Jul 21 '22 at 03:04
  • Oh, sorry! I mess up that Bernoulli polynomial with Bernoulli number. I will re-do it tomorrow. (too late night here), Thank you! @Gary – MathFail Jul 21 '22 at 03:06
  • 1
    @MathFail Are the manipulations with the E-M formula clear in my answer? If they are, I can extend the answer by adding how to obtain $\zeta(-\alpha)$ (although I gave clear hints). – Gary Jul 21 '22 at 03:23
  • Let me try it first :) @Gary – MathFail Jul 21 '22 at 11:52
  • I am done, thank you so much! I will update this post for the detailed derivations @Gary – MathFail Jul 21 '22 at 22:43

2 Answers2

5

Exact formula

We can show a simpler version with $a$ a non-negative integer, which gives a formula that is exact:

$$\sum_{j=1}^{n-1} j^a = \zeta(-a) + \frac{n^{a+1}}{a+1} \sum_{m\ge 0} {a+1\choose m} \frac{B_m}{n^m}.$$

We start with the sum term

$$\frac{n^{a+1}}{a+1} \sum_{m\ge 0} {a+1\choose m} \frac{B_m}{n^m} = \frac{n^{a+1}}{a+1} (a+1)! [z^{a+1}] \frac{z/n}{\exp(z/n)-1} \exp(z) \\ = a! [z^{a+1}] \frac{z \exp(nz)}{\exp(z)-1} \\ = a! [z^{a+1}] \frac{z}{\exp(z)-1} \sum_{q=0}^n {n\choose q} (\exp(z)-1)^q \\ = \frac{B_a}{a+1} + a! [z^a] \sum_{q=1}^n {n\choose q} (\exp(z)-1)^{q-1}.$$

The first term cancels with the Zeta function value, leaving

$$a! [z^a] \sum_{q=1}^n {n\choose q} \sum_{j=0}^{q-1} {q-1\choose j} \exp(jz) (-1)^{q-1-j} \\ = a! [z^a] \sum_{q=0}^{n-1} {n\choose q+1} \sum_{j=0}^q {q\choose j} \exp(jz) (-1)^{q-j} \\ = \sum_{j=1}^{n-1} j^a (-1)^j \sum_{q=j}^{n-1} (-1)^q {n\choose q+1} {q\choose j} \\ = \sum_{j=1}^{n-1} j^a (-1)^j [z^{n-1}] (1+z)^n \sum_{q\ge j} {q\choose j} (-1)^q z^q \\ = \sum_{j=1}^{n-1} j^a [z^{n-1}] (1+z)^n z^j \sum_{q\ge 0} {q+j\choose j} (-1)^q z^q \\ = \sum_{j=1}^{n-1} j^a [z^{n-1}] (1+z)^n z^j \frac{1}{(1+z)^{j+1}} = \sum_{j=1}^{n-1} j^a [z^{n-1-j}] (1+z)^{n-1-j} \\ = \sum_{j=1}^{n-1} j^a.$$

This is the claim.

Asymptotic formula

There is a standard technique that produces the complete asymptotic expansion for this sum and many others like it, which is to use harmonic sums and Mellin transforms. We will deploy this here to prove the formula for $a \lt -1$, with $a$ a real number.

Put $a=-\alpha$ so that $\alpha \gt 1$ and introduce the telescoping sum

$$S(x) = \sum_{k\ge 1} \left(\frac{1}{k^\alpha}-\frac{1}{(x+k)^\alpha}\right).$$ This sum has the property that $$S(n-1) = S(n)-\frac{1}{n^\alpha} = \sum_{q=1}^{n-1} \frac{1}{q^\alpha},$$ so that $S(n)$ is the value we are looking for.

Re-write the sum as follows: $$S(x) = \sum_{k\ge 1} \frac{1}{k^\alpha} \left(1-\frac{1}{(x/k+1)^\alpha}\right).$$

The sum term is harmonic and may be evaluated by inverting its Mellin transform.

Recall the harmonic sum identity $$\mathfrak{M}\left(\sum_{k\ge 1} \lambda_k g(\mu_k x);s\right) = \left(\sum_{k\ge 1} \frac{\lambda_k}{\mu_k^s} \right) g^*(s)$$ where $g^*(s)$ is the Mellin transform of $g(x).$

In the present case we have $$\lambda_k = \frac{1}{k^\alpha}, \quad \mu_k = \frac{1}{k} \quad \text{and} \quad g(x) = 1 - \frac{1}{(1+x)^\alpha}.$$

It follows that $$\sum_{k\ge 1} \frac{\lambda_k}{\mu_k^s} = \sum_{k\ge 1} \frac{1}{k^\alpha} \times k^s = \zeta(\alpha-s)$$ which has half-plane of convergence $\alpha-s > 1$ or $s < \alpha-1.$

We need the Mellin transform $g^*(s)$ of $g(x)$ which is $$\int_0^\infty \left(1 - \frac{1}{(1+x)^\alpha}\right) x^{s-1} dx$$

which is immediately seen to be a beta function integral with value $$g^*(s) = - \frac{1}{\Gamma(\alpha)} \Gamma(s)\Gamma(\alpha-s)$$ and fundamental strip $\langle -1, 0 \rangle,$ which is covered by the half-plane of convergence of the Zeta function term.

It follows that the Mellin transform $Q(s)$ of the harmonic sum $S(x)$ is given by $$Q(s) = - \frac{1}{\Gamma(\alpha)} \Gamma(s)\Gamma(\alpha-s) \zeta(\alpha-s).$$ The Mellin inversion integral here is $$\frac{1}{2\pi i} \int_{-1/2-i\infty}^{-1/2+i\infty} Q(s)/x^s ds$$ which we evaluate by shifting it to the right for an expansion at infinity.

First treat the pole from the zeta function term at $s=\alpha-1$, which has

$$\mathrm{Res}(Q(s)/x^s; s=\alpha-1) = -\frac{1}{\Gamma(\alpha)} \Gamma(\alpha-1) \Gamma(1)\times -1 \times x^{1-\alpha} \\ = -\frac{1}{1-\alpha} x^{1-\alpha}.$$

For the pole at $s=-1$ we get no contribution as it is to the left of the inversion integral.

For the pole at $s=0$ from the simple gamma function term we obtain $$\mathrm{Res}(Q(s)/x^s; s=0) = -\frac{1}{\Gamma(\alpha)} \Gamma(\alpha) \zeta(\alpha) = -\zeta(\alpha).$$

For the pole at $s=\alpha$ from the compound gamma function term we obtain $$\mathrm{Res}(Q(s)/x^s; s=\alpha) = -\frac{1}{\Gamma(\alpha)} \Gamma(\alpha) \times -1 \times\zeta(0) x^{-\alpha} = -\frac{1}{2} x^{-\alpha}.$$

The remaining poles are at $s = q+\alpha$ where $q\ge 1$ and contribute $$\mathrm{Res}(Q(s)/x^s; s=q+\alpha) = -\frac{1}{\Gamma(\alpha)} \Gamma(q+\alpha) \frac{(-1)^{q+1}}{q!} \zeta(-q) \frac{1}{x^{q+\alpha}} \\ = - \prod_{p=0}^{q-1} (p+\alpha) \times \frac{(-1)^{q+1}}{q!} (-1)^q \frac{B_{q+1}}{q+1} \frac{1}{x^{q+\alpha}} = B_{q+1} \frac{\prod_{p=0}^{q-1} (p+\alpha)}{(q+1)!} \frac{1}{x^{q+\alpha}} \\ = (-1)^q B_{q+1} \frac{\prod_{p=0}^{q-1} (-\alpha-p)}{(q+1)!} \frac{1}{x^{q+\alpha}} = \frac{(-1)^q}{1-\alpha} {-\alpha+1\choose q+1} \frac{B_{q+1}}{x^{q+\alpha}}.$$

The zero values of the Bernoulli numbers correctly represent cancelation of the gamma function poles by the trivial zeros of the zeta function.

Setting $x=n$ and observing that the shift to the right produces a minus sign we obtain the following asymptotic expansion: $$S(n) = \sum_{k=1}^n \frac{1}{k^\alpha} \sim \frac{1}{1-\alpha} n^{1-\alpha} + \frac{1}{2} n^{-\alpha} + \zeta(\alpha) + \frac{1}{1-\alpha} \sum_{q\ge 2} (-1)^{q} {1-\alpha\choose q} \frac{B_q}{n^{q+\alpha-1}}.$$

Note however that the cited formula is $S(n)-\frac{1}{n^\alpha}$ so we get

$$S(n)-\frac{1}{n^\alpha} = \sum_{k=1}^{n-1} \frac{1}{k^\alpha} \sim \frac{1}{1-\alpha} n^{1-\alpha} - \frac{1}{2} n^{-\alpha} + \zeta(\alpha) + \frac{n^{1-\alpha}}{1-\alpha} \sum_{q\ge 2} {1-\alpha\choose q} \frac{B_q}{n^q}.$$

Here we have made use of the fact that with $q\ge 2$ the odd-index Bernoulli numbers are zero so we may drop the $(-1)^q$ term.

Now observe that for $q=1$ the sum term will produce

$$\frac{n^{1-\alpha}}{1-\alpha} \times (1-\alpha) \times -\frac{1}{2} \frac{1}{n} = - \frac{1}{2} n^{-\alpha}$$

Furthermore for $q=0$ we find

$$\frac{n^{1-\alpha}}{1-\alpha} \times 1 \times 1 = \frac{n^{1-\alpha}}{1-\alpha}.$$

This means we may merge the two leading terms into the sum and we find with $a\lt -1$, $\alpha = -a$,

$$\bbox[5px,border:2px solid #00A000]{ \sum_{j=1}^{n-1} j^a \sim \zeta(-a) + \frac{n^{a+1}}{a+1} \sum_{q\ge 0} {a+1\choose q} \frac{B_q}{n^q}.}$$

as claimed.

Marko Riedel
  • 61,317
  • Thank you very much, your derivation is very difficult for me and it takes a lot of time to digest.... I compare your final result boxed in green with my $Eq.(**)$, which miss the $\zeta(-a)$ term, I want to know where is my mistake, or what term I missed, because I guess my starting point is different from yours... – MathFail Jul 18 '22 at 04:18
2

The problem is that you did not deal properly with the terms coming from the lower bound of the summation and you did not investigate the remainder. Let $\alpha \neq -1$ fixed and choose a positive integer $m$ so that $2m - 1 > \alpha$. Using the Euler–Maclaurin formula, we have \begin{align*} & \!\!\!\!\!\!\!\sum\limits_{j = 1}^{n - 1} {j^\alpha } = - n^\alpha \!+ \!\sum\limits_{j = 1}^n {j^\alpha } = - n^\alpha \! +\! \int_1^n\! {t^\alpha dt} + \frac{{n^\alpha + 1}}{2} + \!\sum\limits_{s = 1}^{m - 1} {\frac{{B_{2s} }}{{(2s)!}}\frac{{\alpha !}}{{(\alpha - 2s + 1)!}}\left[ {n^{\alpha - 2s + 1} \! -\! 1} \right]} \\ & + \int_1^n {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} \\ = \; & \frac{{n^{\alpha + 1} }}{{\alpha + 1}} - \frac{{n^\alpha }}{2} + n^{\alpha + 1} \sum\limits_{s = 1}^{m - 1} {\frac{{B_{2s} }}{{(2s)!}}\frac{{\alpha !}}{{(\alpha - 2s + 1)!}}n^{ - 2s} } \\ & - \int_n^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} \\ & - \frac{1}{{\alpha + 1}} + \frac{1}{2} - \!\sum\limits_{s = 1}^{m - 1} {\frac{{B_{2s} }}{{(2s)!}}\frac{{\alpha !}}{{(\alpha - 2s + 1)!}}} +\! \int_1^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} \\ = \; & \frac{{n^{\alpha + 1} }}{{\alpha + 1}}\sum\limits_{s = 0}^{2m - 2} {\frac{{B_s }}{{s!}}\frac{{(\alpha + 1)!}}{{(\alpha - s + 1)!}}n^{ - s} } -\! \int_n^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} \\ & - \frac{1}{{\alpha + 1}} + \frac{1}{2} - \!\sum\limits_{s = 1}^{m - 1} {\frac{{B_{2s} }}{{(2s)!}}\frac{{\alpha !}}{{(\alpha - 2s + 1)!}}} + \!\int_1^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt}. \end{align*} It is easy to show that $$ \int_n^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} = n^{\alpha + 1} \mathcal{O}(n^{ - 2m} ) $$ as $n\to +\infty$. The last line we got from the Euler–Maclaurin formula does not depend on $n$ but seemingly depends on $m$. You have to show that it is independent of $m$ and its value is $\zeta(-\alpha)$. If $\alpha<-1$, this follows from the Euler–Maclaurin formula applied to the infinite version of the sum. To extend it to $\alpha<2m-1$, you can appeal to analytic continuation.

Gary
  • 31,845
  • 1
    I think I am done!!! haha! – MathFail Jul 21 '22 at 22:35
  • I make another post (https://math.stackexchange.com/questions/4498899/derive-int-n-infty-fracb-2m-b-2m-left-t-right-2m) on the your last equation, could you please take a look when you got some time? Thank you very much. – MathFail Jul 23 '22 at 23:05