0

This question is why the following derivation seems to give a different answer to the result mentioned in @Gary 's answer

$$I_R=\int_n^{ + \infty } {\frac{{B_{2m} - B_{2m} (\left\{ t \right\})}}{{(2m)!}}\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m} dt} = n^{\alpha + 1} \mathcal{O}(n^{ - 2m} )\tag{0}$$

where $B_{2m}$ is Bernoulli number, $B_{2m}(x)$ is Bernoulli polynomial, and $\{t\}=t-\lfloor t\rfloor$

Let $f(t)=t^\alpha$ and we have $f^{(2m)}(t)=\frac{{\alpha !}}{{(\alpha - 2m)!}}t^{\alpha - 2m}$. Let $m$ to be large enough such that $2m-1>\alpha$

$$\begin{align} I_R&=\int_n^\infty {\frac{{B_{2m} - B_{2m} (t-\lfloor t\rfloor)}}{{(2m)!}}f^{(2m)}(t)~ dt}\\ \\ I_R&=\frac{B_{2m}}{(2m)!}f^{(2m-1)}(t)|_n^\infty-\frac{1}{(2m)!}\int_n^{ \infty } B_{2m} (t-\lfloor t\rfloor) f^{(2m)}(t)~ dt\\ \\ I_R&=-\frac{B_{2m}}{(2m)!}\frac{{\alpha !}}{{(\alpha+1 - 2m)!}}~n^{\alpha+1 - 2m}-\frac{1}{(2m)!}\sum_{k=n}^\infty\int_k^{ k+1 } B_{2m} (t-k) f^{(2m)}(t)~ dt\\ \\ I_R&=-\frac{n^{\alpha+1}}{\alpha+1}\binom{\alpha+1}{2m}\frac{B_{2m}}{n^{2m}}-\frac{1}{(2m)!}\sum_{k=n}^\infty I_{k,2m} \tag{1} \end{align}$$

Where we define:

$$I_{k,p}=\int_k^{ k+1 } B_{p} (t-k) f^{(p)}(t)~ dt \tag{2}$$

Due to the special relation between Bernoulli polynomial and Bernoulli number, we start from $p=2$ to demonstrate the calculation, and deal with $p=1$ case later. Perform integration by part, we get:

$$\begin{align} I_{k,2}&=B_2(t-k)f'(t)|_k^{k+1}-\int_k^{ k+1 } B'_{2} (t-k) f'(t)~ dt\\ \\ \noindent\text{Note:}~~ B'_s(x)=sB_{s-1}(x),~~~s=1,2,3...\\ \\ I_{k,2}&=B_2(1)f'(k+1)-B_2(0)f'(k)-2\int_k^{ k+1 } B_{1} (t-k) f'(t)~ dt\\ \\ \noindent\text{Note:}~~ B_p(1)=B_p(0)=B_p,~~~p=2,3...\\ \\ I_{k,2}&=B_2\cdot\left[f'(k+1)-f'(k)\right]-2I_{k,1}\\ \\ \noindent\text{Keep going, we have}\\ \\ I_{k,3}&=B_3\cdot\left[f''(k+1)-f''(k)\right]-3I_{k,2}\\ \\ ...\\ \\ I_{k,p}&=B_p\cdot\left[f^{(p-1)}(k+1)-f^{(p-1)}(k)\right]-p\cdot I_{k,p-1}\\ \end{align}$$

Justify this recursive equation and we can get following formula: $$I_{k,p}=\frac{p!}{\alpha+1}\sum_{i=2}^p \binom{\alpha+1}{i}\cdot B_i\cdot (-1)^{p-i}\cdot\left[(k+1)^{\alpha-i+1}-k^{\alpha-i+1}\right]+(-1)^{p-1}\cdot p!\cdot I_{k,1}\tag{3}\\ $$

Now, let $p=2m$, and note $B_i=0$ for $i=3,5,7,...$

$$I_{k,2m}=\frac{(2m)!}{\alpha+1}\sum_{i=2}^{2m} \binom{\alpha+1}{i}\cdot B_i\cdot\left[(k+1)^{\alpha-i+1}-k^{\alpha-i+1}\right]-(2m)!\cdot I_{k,1}\tag{4}\\ $$

Take summation on $k$

$$\begin{align} \sum_{k=n}^\infty I_{k,2m}&=\frac{(2m)!}{\alpha+1}\sum_{i=2}^{2m} \binom{\alpha+1}{i}\cdot B_i\cdot\sum_{k=n}^\infty\left[(k+1)^{\alpha-i+1}-k^{\alpha-i+1}\right]-(2m)!\cdot \sum_{k=n}^\infty I_{k,1}\\ \\ \sum_{k=n}^\infty I_{k,2m}&=-\frac{(2m)!}{\alpha+1}\sum_{i=2}^{2m} \binom{\alpha+1}{i}\cdot B_i\cdot n^{\alpha-i+1} -(2m)!\cdot \sum_{k=n}^\infty I_{k,1}\\ \\ \sum_{k=n}^\infty I_{k,2m}&=-(2m)!~\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=2}^{2m} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i} -(2m)!\cdot \sum_{k=n}^\infty I_{k,1}\tag{5} \end{align}$$

Now, let's compute $I_{k,1}$. Go back to Eq.$(2)$, perform integration by part:

$$\begin{align} I_{k,1}&=B_1(t-k)f(t)|_k^{k+1}-\int_k^{ k+1 } B_{0} (t-k) f(t)~ dt\\ \\ \noindent\text{Note:}~~ B_0(x)=B_0=1\\ \\ I_{k,1}&=B_1(1)f(k+1)-B_1(0)f(k)-B_{0}\cdot\int_k^{ k+1 } f(t)~ dt\\ \\ \noindent\text{Note:}~~ B_1(0)=B_1=-\frac{1}{2},~~~B_1(1)=-B_1=\frac{1}{2}\\ \\ I_{k,1}&=\frac{1}{2}\left[(k+1)^\alpha+k^\alpha\right]-\frac{1}{\alpha+1}\left[(k+1)^{\alpha+1}-k^{\alpha+1}\right]\\ \end{align}$$

Take the sum:

$$\begin{align} \sum_{k=n}^\infty I_{k,1}&=\frac{1}{2}\sum_{k=n}^\infty\left[(k+1)^\alpha+k^\alpha\right]-\frac{1}{\alpha+1}\sum_{k=n}^\infty\left[(k+1)^{\alpha+1}-k^{\alpha+1}\right]\\ \\ \sum_{k=n}^\infty I_{k,1}&=\sum_{k=n}^\infty k^\alpha-\frac{1}{2}n^\alpha+\frac{n^{\alpha+1}}{\alpha+1}\tag{6} \end{align}$$

Plug Eq.$(6)$ into Eq.$(5)$

$$\begin{align} \sum_{k=n}^\infty I_{k,2m}&=-(2m)!~\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=2}^{2m} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i} -(2m)!\cdot \left(\sum_{k=n}^\infty k^\alpha-\frac{1}{2}n^\alpha+\frac{n^{\alpha+1}}{\alpha+1}\right)\\ \\ \sum_{k=n}^\infty I_{k,2m}&=-(2m)!~\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{2m} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i} -(2m)!\cdot \sum_{k=n}^\infty k^\alpha\tag{7}\\ \end{align}$$

Plug Eq.$(7)$ into Eq.$(1)$ $$\begin{align} I_R&=-\frac{n^{\alpha+1}}{\alpha+1}\binom{\alpha+1}{2m}\frac{B_{2m}}{n^{2m}}+\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{2m} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i} +\sum_{k=n}^\infty k^\alpha\\ \\ I_R&=\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{2m-2} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i} +\sum_{k=n}^\infty k^\alpha \tag{8} \end{align}$$

For Eq.$(8)$

$$\begin{align} \frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{2m-2} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i}&\sim \frac{n^{\alpha+1}}{\alpha+1} \left(1+ \frac{c_2}{n^2}+...+ \frac{c_{2m-2}}{n^{2m-2}}\right)\\ \\ \sum_{k=n}^\infty k^\alpha &\sim \frac{n^{\alpha+1}}{\alpha+1} \end{align}$$

$$\Longrightarrow I_R \sim n^{\alpha+1} \mathcal{O}(1 )$$

But why Eq.$(0)$ gives $I_R \sim n^{\alpha + 1} \mathcal{O}(n^{ - 2m} )$ ?

MathFail
  • 21,128
  • Estimate the absolute value of the integral by moving the absolute value inside, then estimate the difference of the Bernoulli number and polynomial by twice the Bernoulli number. Then you are left with the integral of the power function times a constant. Evaluate the simple integral. – Gary Jul 24 '22 at 00:38
  • But why if I use the Eq.(8), it shows the different result? – MathFail Jul 24 '22 at 00:42
  • I am sure the Eq.(8) is correct, because if I plug in Eq.(8) into the Euler-Maclaurin summation, I will get $\sum_{k=1}^{n-1} k^a=\zeta(-a)+\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{2m-2} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i}-I_R$. The Bernoulli summation term cancel exactly with that in $I_R$, and finally left with $\sum_{k=1}^{n-1} k^a=\zeta(-a)-\sum_{k=n}^{\infty} k^a$ which is an identity. – MathFail Jul 24 '22 at 00:52
  • In $(8)$, note that $$ \sum\limits_{k = n}^\infty {k^\alpha } \sim - \frac{{n^{\alpha + 1} }}{{\alpha + 1}}\sum\limits_{i = 0}^\infty {\binom{\alpha + 1}{i}\frac{{B_i }}{{n^i }}} . $$ Thus, $$ I_R \sim \frac{{n^{\alpha + 1} }}{{\alpha + 1}}\sum\limits_{i = 2m}^\infty {\binom{\alpha + 1}{i}\frac{{B_i }}{{n^i }}} = n^{\alpha + 1} \mathcal{O}(n^{ - 2m} ). $$ To prove $(0)$, just use $\left| {B_{2m} - B_{2m} (\left{ t \right})} \right| \le 2\left| {B_{2m} } \right|$ for all $t>0$ and $\int_n^{ + \infty }t^{\alpha - 2m} dt = \frac{n^{\alpha + 1 - 2m} }{\alpha + 1 - 2m}$. – Gary Jul 25 '22 at 01:48
  • Yes, I saw your comment on my original post about using this bound to quickly prove it. I make this long derivation and want to confirm it from a different way. But here you suggest $$\sum_{k=n}^\infty k^\alpha \sim -\frac{n^{\alpha+1}}{\alpha+1}\sum_{i=0}^{\infty} \binom{\alpha+1}{i}\cdot \frac{B_i}{n^i}$$, then how do you prove this? I think I got into a logic loop... @Gary – MathFail Jul 25 '22 at 19:32
  • Exactly. It is a logical loop. – Gary Jul 25 '22 at 22:47

0 Answers0