The easiest bijection $\mathbb{N}\times\mathbb{N} \to \mathbb{N}$ I know is like this:
$$\color{red}{42},\color{blue}{2013} \to
\color{blue}{2}\,
\color{red}{0}\,
\color{blue}{0}\,
\color{red}{0}\,
\color{blue}{1}\,
\color{red}{4}\,
\color{blue}{3}\,
\color{red}{2}\,.
$$
The above is for base 10, but it works for any base $b \geq 2$.
Edit: As there was some confusion, some alternative explanations:
- To obtain the result, one starts writing digits from the right side in alternating fashion, and if one of the numbers has no more digits, we put zeros.
- Let $\varepsilon$ be the empty string, then
\begin{align}
f(\color{red}{a_ma_{m-1}\ldots a_2a_1},
\color{blue}{b_nb_{n-1}\ldots b_2b_1}) &=
f(\color{red}{a_ma_{m-1}\ldots a_2},
\color{blue}{b_nb_{n-1}\ldots b_2})
\color{blue}{b_1}\color{red}{a_1} \\
f(\color{red}{\varepsilon},
\color{blue}{b_nb_{n-1}\ldots b_2b_1}) &=
f(\color{red}{\varepsilon},
\color{blue}{b_nb_{n-1}\ldots b_2})
\color{blue}{b_1}\color{red}{0} \\
f(\color{red}{a_ma_{m-1}\ldots a_2a_1},
\color{blue}{\varepsilon}) &=
f(\color{red}{a_ma_{m-1}\ldots a_2a_1},
\color{blue}{\varepsilon})
\color{blue}{0}\color{red}{a_1} \\
f(\color{red}{a_1},
\color{blue}{\varepsilon}) &=
\color{blue}{\varepsilon}\color{red}{a_1} \\
f(\color{red}{\varepsilon},
\color{blue}{\varepsilon}) &= \varepsilon
\end{align}
- Let numbers be treated as polynomials in their base, i.e. $\mathbf{123}(z) = 1z^2+2z^1+3z^0$, then
$$f(\color{red}{\mathbf{a}},
\color{blue}{\mathbf{b}})(z) = \color{red}{\mathbf{a}}(z^2) + z\color{blue}{\mathbf{b}}(z^2).$$
Some more examples for the first method:
\begin{align}
\color{red}{0},\color{blue}{50} &\to
\color{blue}{5}\,
\color{red}{0}\,
\color{blue}{0}\,
\color{red}{0}\,,\\
\color{red}{50},\color{blue}{0} &\to
\color{red}{5}\,
\color{blue}{0}\,
\color{red}{0}.
\end{align}
An example for the second method:
\begin{align}
f(\color{red}{42},\color{blue}{2013}) &= f(\color{red}{4},\color{blue}{201})
\,\color{blue}{3}\,\color{red}{2}\, \\
&= f(\color{red}{\varepsilon},\color{blue}{20})
\,\color{blue}{1}\,\color{red}{4}\,\color{blue}{3}\,\color{red}{2}\, \\
&= f(\color{red}{\varepsilon},\color{blue}{2}) \,
\color{blue}{0}\,\color{red}{0}\,
\color{blue}{1}\,\color{red}{4}\,\color{blue}{3}\,\color{red}{2}\,\\
&= f(\color{red}{\varepsilon},\color{blue}{\varepsilon}) \,
\color{blue}{2}\,\color{red}{0}\,\color{blue}{0}\,\color{red}{0}\,
\color{blue}{1}\,\color{red}{4}\,\color{blue}{3}\,\color{red}{2}\, \\
&= \varepsilon\, \color{blue}{2}\,\color{red}{0}\,\color{blue}{0}\,\color{red}{0}\,
\color{blue}{1}\,\color{red}{4}\,\color{blue}{3}\,\color{red}{2}\,
\\
&= \color{blue}{2}\,\color{red}{0}\,\color{blue}{0}\,\color{red}{0}\,
\color{blue}{1}\,\color{red}{4}\,\color{blue}{3}\,\color{red}{2}\,
.
\end{align}
Finally, an example for the third method:
\begin{align}
\color{red}{\mathbf{a}}(x) &= \color{red}{4}x+\color{red}{2} \\
\color{blue}{\mathbf{b}}(y) &= \color{blue}{2}y^3+\color{blue}{0}y^2+\color{blue}{1}y^1+\color{blue}{3}y^0 \\
\color{red}{\mathbf{a}}(z^2) &= 4z^2+2 \\
\color{blue}{\mathbf{b}}(z^2) &= 2z^6+z^2+3 \\
f(\color{red}{\mathbf{a}}, \color{blue}{\mathbf{b}})(z)
&= \color{red}{\mathbf{a}}(z^2)+z\color{blue}{\mathbf{b}}(z^2) \\
&= 2z^7+z^3+4z^2+3z+2 \\
&= \color{blue}{2}z^7+\color{red}{0}z^6+\color{blue}{0}z^5+\color{red}{0}z^4+\color{blue}{1}z^3+\color{red}{4}z^2+\color{blue}{3}z^1+\color{red}{2}z^0
\end{align}
I hope this helps ;-)