The wave equation with transverse force is given as following:
$u_{tt}-c^2u_{xx}+ku=0$ $(k>0)$
Define the total energy $$E(t)=\frac{1}{2} \int_{-\infty}^{\infty}((u_t)^2+c^2(u_x)^2)dx$$ There are three assumptions:
- $u(x,0)=0$ for all $-\infty < x < \infty$
- $\lim\limits_{\vert x \vert \rightarrow \infty}u_t(x,0)=0$
- $\lim\limits_{\vert x \vert \rightarrow \infty}u(x,t)=0$ for all $t>0$
I want to determine the sign of $E(\tau)-E(0)$ for some $\tau>0$.
Observe that $$\frac{d}{dt}E(t)=\frac{d}{dt}\frac{1}{2} \int_{-\infty}^{\infty}((u_t)^2+c^2(u_x)^2)dx=\frac{1}{2} \int_{-\infty}^{\infty}\frac{\partial}{\partial t}((u_t)^2+c^2(u_x)^2)dx$$$$=\int_{-\infty}^{\infty}(u_tu_{tt}+c^2u_xu_{xt})dx$$ Then by substituting $u_{tt}=c^2u_{xx}-ku$, we have $$\frac{d}{dt}E(t)=\int_{-\infty}^{\infty}((c^2u_{xx}-ku)u_t+c^2u_xu_{xt})dx$$$$=c^2\int_{-\infty}^{\infty}(u_{xx}u_t+u_xu_{xt})dx-\int_{-\infty}^{\infty} kuu_t \ dx$$$$=c^2\int_{-\infty}^{\infty}\frac{\partial}{\partial x}(u_xu_t)dx-\int_{-\infty}^{\infty} kuu_t \ dx$$$$=c^2(u_xu_t)\Big\vert_{x=-\infty}^{x=\infty}-\int_{-\infty}^{\infty} kuu_t \ dx$$$$=-\int_{-\infty}^{\infty} kuu_t \ dx$$ Thus, $$E(\tau)-E(0)=-\int_0^\tau \int_{-\infty}^{\infty} kuu_t \ dx dt$$ By Fubini's theorem (but I'm not sure that $\int_{-\infty}^{\infty} kuu_t \ dx$ converges), $$E(\tau)-E(0)=-k\int_{-\infty}^{\infty}\int_0^\tau uu_t \ dt dx$$ Here, by integration by parts, $$\int_0^\tau uu_t \ dt=u^2\Big\vert_{t=0}^{t=\tau}-\int_0^\tau uu_t \ dt$$$$=u^2(x,\tau)-\int_0^\tau uu_t \ dt$$ Thus $$E(\tau)-E(0)=-k\int_{-\infty}^{\infty}\frac{1}{2}u^2(x,\tau) dx<0$$
I am curious about three parts:
- Does the third assumption imply $(u_xu_t)\Big\vert_{x=-\infty}^{x=\infty}=0$?
- Can I justify that Fubini's theorem holds for $\int_0^\tau \int_{-\infty}^{\infty} kuu_t \ dx dt=\int_{-\infty}^{\infty}\int_0^\tau kuu_t \ dt dx$?
- Is the second assumption necessary? (It is mentioned in my textbook, but I didn't use it in my proof.)
I would appreciate it if someone gives me any intuitive answer.