Could someone please help me with the following question? I got stuck somewhere.
Given a function $u(t,x)$ satisfying the relationship: $$ u_{tt} + au_t \ = \ c^2u_{xx} \qquad \text{ for some } a>0 $$ And the requirement that holds for sufficiently big $x$: $$ \exists\alpha>0, \ \exists C(x)>0, \ \max \{|u_t(t,x)|,|u_x(t,x)|\} \leq\frac{ C(t)}{|x|^\alpha} $$ Show that the energy function $E(T)$ as defined below is a nonincreasing solution. $$ E(t) \ = \ \frac12 \int_{-\infty}^\infty u_t^2 + c^2u_x^2 dx $$
**What I tried **
I just took its derivative:
$$ \frac{\partial}{\partial t}E(t) \ = \ \frac12 \int_{-\infty}^\infty \frac{\partial}{\partial t}\left[u_t^2 + c^2u_x^2\right] dx \ = \ \int_{-\infty}^\infty u_tu_{tt} + c^2u_xu_{tx}dx $$ And $u_{tt} \ = \ -au_t +c^2u_{xx}$, so $$ \frac{\partial}{\partial t}E(t) \ = \ \int_{-\infty}^\infty u_t(-au_t +c^2u_{xx}) + c^2u_xu_{tx}dx \ = \ \int_{-\infty}^\infty u_t(-au_t +c^2u_{xx}) + c^2u_xu_{tx}dx \ = \ c^2\int_{-\infty}^\infty u_xu_{xt}+u_tu_{xx}dx - a \int_{-\infty}^\infty u_t^2dx $$ How could I show that this is greater than zero? In tried to find primitives but I failed.
\begin{align} c^{2} \int_{\mathbb{R}} u_{t} u_{xx} + u_{x} u_{tx} dx - a \int_{\mathbb{R}} u_{t}^{2} dx = c^{2} \int_{\mathbb{R}} \partial_{x} (u_{t} u_{x}) dx - a \int_{\mathbb{R}} u_{t}^{2} dx \end{align}
Then use the fact that
$$\int_{\mathbb{R}} u_{t}^{2} dx$$
is always positive.
– Matthew Cassell Jun 07 '15 at 14:48