Latest Edit
By @KStarGamer’s help, I can finally find a reduction formula for $I_n$ as below: $$\boxed{I_n= 2 \ln 2 I_{n-1}+ (n-1)!\sum_{k=0}^{n-2} \frac{2^{n-k}-2}{k!}\zeta(n-k) I_k} $$
where $n\geq 2.$
In my post, I started to evaluate $$I_1=\int_{0}^{\infty} \frac{\ln \left(1+x^{2}\right)}{1+x^{2}} d x =\pi \ln 2, $$ then I challenge myself on $$I_2=\int_{0}^{\infty} \frac{\ln ^{2}\left(1+x^{2}\right)}{1+x^{2}}dx$$ Again, letting $x=\tan \theta$ as for $I_1$ yields$$I_2=\int_{0}^{\frac{\pi}{2}} \ln ^{2}\left(\sec ^{2} \theta\right) d \theta= 4 \int_{0}^{\frac{\pi}{2}} \ln ^{2}(\cos x) dx $$ It’s very hard to deal with $\ln^2$ and I was stuck. Suddenly a wonderful identity came to my mind. $$ 2\left(a^{2}+b^{2}\right)=(a+b)^{2}+(a-b)^{2}, \\$$
by which
$\displaystyle 2\left[\ln ^{2}(\sin x)+\ln ^{2}(\cos x)\right]=[\ln (\sin x)+\ln (\cos x)]^{2}+[\ln (\sin x)-\ln (\cos x)]^{2} ,\tag*{}\\ $
we have $\displaystyle 4 L=\underbrace{\int_{0}^{\frac{\pi}{2}} \ln ^{2}\left(\frac{\sin 2 x}{2}\right)}_{J} d x+\underbrace{\int_{0}^{\frac{\pi}{2}} \ln ^{2}(\tan x) d x}_{K} \tag*{}\\ $
For the first integral, using $ \int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x=-\dfrac{\pi}{2} \ln 2 $ yields $ \begin{aligned}J &=\int_{0}^{\frac{\pi}{2}}[\ln (\sin 2 x)-\ln 2]^{2} d x \\&=\int_{0}^{\frac{\pi}{2}} \ln ^{2}(\sin 2 x) d x-2 \ln 2 \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x +\frac{\pi \ln ^{2} 2}{2} \\& \stackrel{x\mapsto 2x}{=} \frac{1}{2} \int_{0}^{\pi} \ln ^{2}(\sin x) d x-\ln 2 \int_{0}^{\pi} \ln (\sin x) d x+\frac{\pi \ln ^{2} 2}{2} \\& \stackrel{symmetry}{=} L-\ln 2(-\pi \ln 2)+\frac{\pi \ln ^{2} 2}{2} \\&=L+\frac{3 \pi \ln ^{2} 2}{2}\end{aligned}\tag*{} \\$
For the second integral, letting $ y=\tan x $ and using my post yields
$ \displaystyle K=\int_{0}^{\infty} \frac{\ln ^{2} y}{1+y^{2}} d y=\frac{\pi^{3}}{8}, \tag*{} \\$
then
$ \displaystyle 4L=L+\frac{3 \pi \ln ^{2} 2}{2}+\frac{\pi^{3}}{8} \Rightarrow L=\frac{\pi^{3}}{24}+\frac{\pi \ln ^{2} 2}{2}\tag*{} $ Hence $ \displaystyle \boxed{I_2=4L= \frac{\pi^{3}}{6}+2 \pi \ln ^{2} 2} \tag*{} $
My Question: Can I go further with $I_n$, where $n\geq 3$?