Latest Edit
By the contributions of the writers, we finally get the closed form for the integral as:
$$\boxed{\int_{0}^{\infty} \frac{\ln x}{(x^{2}+1)^n} d x =-\frac{\pi(2 n-3) ! !}{2^{n}(n-1) !} \sum_{j=1}^{n-1} \frac{1}{2j-1}}$$
I first evaluate $$I_1=\int_{0}^{\infty} \frac{\ln x}{x^{2}+1} d x \stackrel{x\mapsto\frac{1}{x}}{=} -I_1 \Rightarrow I_1= 0.$$ and then start to raise up the power of the denominator $$I_n=\int_{0}^{\infty} \frac{\ln x}{(x^{2}+1)^n} d x .$$
In order to use differentiation, I introduce a more general integral $$I_n(a)=\int_{0}^{\infty} \frac{\ln x}{(x^{2}+a)^n} d x. $$
Now we can start with $I_1(a)$. Using $I_1=0$ yields
$$\displaystyle 1_1(a)=\int_{0}^{\infty} \frac{\ln x}{x^{2}+a} d x \stackrel{x\mapsto\frac{x}{a}}{=} \frac{\pi \ln a}{4 \sqrt a} \tag*{}$$
Now we are going to deal with $I_n$ by differentiating it by $(n-1)$ times
$$ \frac{d^{n-1}}{d a^{n-1}} \int_{0}^{\infty} \frac{\ln x}{x^{2}+a} d x=\frac{\pi}{4} \frac{d^{n-1}}{d a^{n-1}}\left(\frac{\ln a}{a}\right) $$
$$ \int_{0}^{\infty} \ln x\left[\frac{\partial^{n-1}}{\partial a^{n-1}}\left(\frac{1}{x^{2}+a}\right)\right] d x=\frac{\pi}{4} \frac{d^{n-1}}{d a^{n-1}}\left(\frac{\ln a}{\sqrt a}\right) $$
$$ \int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+a\right)^{n}} d x=\frac{(-1)^{n-1} \pi}{4(n-1) !} \frac{d^{n-1}}{d a^{n-1}}\left(\frac{\ln a}{\sqrt{a}}\right) $$ In particular, when $a=1$, we get a formula for $$ \boxed{\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{n}} d x=\left.\frac{(-1)^{n-1} \pi}{4(n-1)!} \frac{d^{n-1}}{d a^{n-1}}\left(\frac{\ln a}{\sqrt{a}}\right)\right|_{a=1}} $$
For example, $$ \int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{5}} d x=\frac{\pi}{4 \cdot 4 !}(-22)=-\frac{11 \pi}{48} $$ and $$ \int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{10}} d x=\frac{-\pi}{4(9 !)}\left(\frac{71697105}{256}\right)=-\frac{1593269 \pi}{8257536} $$ which is check by WA.
MY question
Though a formula for $I_n(a)$ was found, the last derivative is hard and tedious.
Is there any formula for $$\frac{d^{n-1}}{d a^{n-1}}\left(\frac{\ln a}{\sqrt{a}}\right)? $$