Latest Edit
We are glad to see there are 4 alternative solutions which give the same closed form to the integral:
$$\boxed{\int_0^{\infty} \frac{\ln t}{\left(a^2+t^2\right)^n} d t = \frac{a^{1-2n}\sqrt{\pi}\Gamma\left(n-\frac{1}{2}\right)}{4\Gamma(n)}\left[2\ln a+\psi\left(\frac{1}{2}\right)-\psi\left(n-\frac{1}{2}\right)\right] },$$
where $\psi$ denotes the Digamma Function.
In the post, we found that $$\int_0^{\infty} \frac{\ln x}{a^2+t^2} d x =\frac{\pi \ln a}{2 a }$$ Now I want to generalise the integral as $$ I_n=\int_0^{+\infty} \frac{\ln t}{\left(a+t^2\right)^n} d t $$ where $n\in N$.
Replacing a by $\sqrt{a}$ and differentiating both sides w.r.t. $a$ by $n$ times yields $$ \begin{aligned} &J(a)=\int_0^{\infty} \frac{\ln t}{a+t^2} d t=\frac{\pi}{4 \sqrt{a}} \ln a\\ &\frac{d^n}{d a^n}(J(a))=\frac{\pi}{4} \frac{d^n}{d a^n}\left(\frac{\ln a}{\sqrt{a}}\right) \\ & (-1)^n n ! \int_0^{\infty} \frac{\ln t}{\left(a+t^2\right)} d t= \frac{\pi}{4} \frac{d^n}{d a^n}\left(\frac{\ln a}{\sqrt{a}}\right)\\& \boxed{\int_0^{\infty} \frac{\ln t}{\left(a+t^2\right)^{n+1}} d t=\frac{(-1)^n \pi}{4 n !} \frac{d^n}{d a^n}\left(\frac{\ln a}{\sqrt{a}}\right)} \end{aligned} $$ By Wolfram-alpha, we have
$$ \frac{d^n}{d a^n}\left(\frac{\ln a}{\sqrt{a}}\right)=(-1)^n a^{-\frac{1}{2}-n}\left(\frac{1}{2}\right)_n\left(\ln a+\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}-n\right)\right)\cdots (*) $$ Hence
$$\boxed{\int_0^{\infty} \frac{\ln t}{\left(a+t^2\right)^{n+1}} d t=\frac{\pi}{4 n !} a^{-\frac{1}{2}-n}\left(\frac{1}{2}\right)_n\left(\ln a+\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}-n\right)\right)}$$
In particular, when $a=1$, we have $$\boxed{\int_0^{\infty} \frac{\ln t}{\left(1+t^2\right)^{n+1}} d t=\frac{\pi}{4 n !} \left(\frac{1}{2}\right)_n\left(\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}-n\right)\right)}$$ For example, $$$$ \begin{aligned} \int_0^\infty \frac{\ln t}{\left(1+t^2\right)^4} d t=& \frac{\pi}{24} \cdot \frac{15}{8}\left(-\gamma -\ln 4-\frac{46}{15}+\gamma +\ln 4\right) =-\frac{23 \pi}{96} \end{aligned} $$ $$ My Question: How to find a closed form for $\frac{d^n}{d a^n}\left(\frac{\ln a}{\sqrt{a}}\right) $?