Let $$a_{n}\ge a_{n-1}\ge\cdots\ge a_{0}= 0,$$ and for any $i,j\in\{0,1,2\dots,n\},j>i$, there is $$a_{j}-a_{i}\le j-i.$$ Prove that $$\left(\sum_{k=1}^n a_k \right)^2\ge\sum_{k=1}^n a_k^3.$$
My idea is by mathematical induction:
Assume that $n$ is true, meaning $$\left(\sum_{k=1}^n a_k\right)^2\ge\sum_{k=1}^n a_k^3,$$
then for $n+1$, \begin{align*} \left(\sum_{k=1}^{n+1} a_k\right)^2&=\left(\sum_{k=1}^n a_k\right)^2+2a_{n+1}\sum_{k=1}^n a_k+a_{k + 1}^2\\ &\ge\sum_{k=1}^n a_k^3 + 2a_{n + 1} \sum_{k=1}^n a_k + a_{n + 1}^2. \end{align*} Now it only needs $$2\sum_{k=1}^n a_k+a_{n+1}\ge a_{n + 1}^2.$$
Since for any $i,j\in\{0,1,2\cdots,n\},j>i$, then there is $$a_j-a_i\le j-i,$$ we have $$a_1\ge a_{n+1}-n,\ a_2\ge a_{n+1}-(n-1),\ \cdots$$ so $$2\sum_{k=1}^n a_k+a_{n+1}\ge (2n+1)a_{n+1}-(n+1)n$$ $$\Longleftrightarrow (a_{n+1}-n)(a_{n+1}-n-1)\le 0.$$ From here I can't work out. Thank you everyone.