A bounty hunter
For all in the Math SE community: Enforcement of Quality Standards
My answers
Proving $(λ^d + (1-λ^d)e^{(d-1)s})^{\frac{1}{1-d}}\leq\sum\limits_{n=0}^\infty\frac1{n!}λ^{\frac{(d^n-1)d}{d-1}+n}s^ne^{-λs}$
Prove $\lim\limits_{n\to∞}{\sum\limits_{x=0}^n\binom nx(1+{\rm e}^{-(x+1)})^{n+1}\over\sum\limits_{x=0}^n\binom nx(1+{\rm e}^{-x})^{n + 1}}=\frac 13$
Does $\sum\limits_{k=1}^n\frac{a_i-a_k}{a_i+a_k}\cdot\frac{a_j-a_k}{a_j+a_k}=0$ for all $i\neq j$ imply $a_1=a_2=\cdots=a_n$?