We can do this with Feynman's trick and the Weierstrass substitution of $u=\tan(x/2)$.
Consider the more general integral,
$$\mathcal{I}(\alpha) = \int_{-\pi/2}^{\pi/2} \frac{1}{\sin(x)} \ln \Big( 1 + \alpha \sin(x) \Big) \, \mathrm{d}x
\newcommand{\II}{\mathcal{I}}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\a}{\alpha}$$
Note that you seek $\II(1/2)$.
On the assumption we may do so: differentiate w.r.t. $\a$ and interchange the integral and derivative to find
$$\II'(\a) = \int_{-\pi/2}^{\pi/2} \frac{1}{\sin(x)} \frac{1}{1 + \a \sin(x)} \sin(x) \, \dd x = \int_{-\pi/2}^{\pi/2} \frac{\dd x}{1 + \a \sin(x)}$$
Let $u = \tan(x/2)$. Then
$$\II'(\a) = \int_{-1}^1 \frac{1}{1 + \a \frac{2u}{u^2+1}} \cdot \frac{2}{u^2+1} \, \dd u = 2\int_{-1}^1 \frac{\dd u}{u^2 + 2 \a u + 1} $$
Complete the square in the denominator; we get
$$\II'(\a) = 2 \int_{-1}^1 \frac{\dd u}{(u+\a)^2 + 1 - \a^2}$$
We then factor out $1-\a^2$:
$$\II'(\a) = \frac{2}{1-\a^2} \int_{-1}^1 \frac{\dd u}{1 + \left( \frac{u+\a}{\sqrt{1-\a^2}} \right)^2} $$
A second substitution, letting $v$ be our parenthetical, gives
$$\II'(\a) =\frac{2}{\sqrt{1 - \a^2} } \int_{v(-1)}^{v(1)} \frac{\dd v}{1 + v^2} $$
Recall that
$$\int \frac{1}{1+ \xi^2} \, \dd \xi = \arctan(\xi) + C$$
so
$$\II'(\a) = \frac{2}{\sqrt{1 - \a^2} } \arctan\left( \frac{u+\a}{\sqrt{1-\a^2}} \right) \bigg|_{u=-1}^{u=1}$$
With some algebraic manipulation and using that $\arctan(\cdot)$ is an odd function, we see that
\begin{align*}
&\arctan\left( \frac{u+\a}{\sqrt{1-\a^2}} \right) \bigg|_{u=-1}^{u=1}\\
&= \arctan\left( \frac{1+\a}{\sqrt{1-\a^2}} \right) - \arctan\left( \frac{-1+\a}{\sqrt{1-\a^2}} \right) \\
&= \arctan\left( \frac{1+\a}{(1-\a)^{1/2} (1+\a)^{1/2}} \right) - \arctan\left( \frac{-1+\a}{(1-\a)^{1/2} (1+\a)^{1/2}} \right) \\
&= \arctan\left( \frac{(1+\a)^{1/2}}{(1-\a)^{1/2} } \right) - \arctan\left( \frac{-1+\a}{(1-\a)^{1/2} (1+\a)^{1/2}} \right) \\
&= \arctan\left( \frac{(1+\a)^{1/2}}{(1-\a)^{1/2} } \right) + \arctan\left( \frac{1-\a}{(1-\a)^{1/2} (1+\a)^{1/2}} \right) \\
&= \arctan\left( \frac{(1+\a)^{1/2}}{(1-\a)^{1/2} } \right) + \arctan\left( \frac{(1-\a)^{1/2} }{(1+\a)^{1/2}} \right) \\
&= \arctan\left( \sqrt{ \frac{1+\a}{1-\a} } \right) + \arctan\left( \sqrt{ \frac{1-\a}{1+\a} } \right)
\end{align*}
We can then use the famous identity
$$\arctan(\xi) + \arctan \left( \frac 1 \xi \right) = \begin{cases}
\pi/2 & \xi > 0 \\
-\pi/2 & \xi < 0 \end{cases}$$
The radical (our $\xi$) in our case is never negative, so we use that and finally have
$$\II'(\a) = \frac{\pi}{\sqrt{1-\a^2}}$$
Recall that
$$\int \frac{\dd \xi}{\sqrt{1- \xi^2}} = \arcsin(\xi)+C$$
Integration w.r.t. $\a$ gives us, clearly,
$$\II(\a) = \pi \arcsin(\a) + C$$
Finally, note that $\II(0)$ is obvious:
$$\II(0) =\int_{-\pi/2}^{\pi/2} \frac{1}{\sin(x)} \ln \Big( 1 + 0 \cdot \sin(x) \Big) \, \mathrm{d}x = \int_{-\pi/2}^{\pi/2} \frac{\ln(1)}{\sin(x)} \, \mathrm{d}x = 0$$
as $\ln(1) = 0$. Thus we easily find $C$:
$$\II(0) = 0 = \pi \arcsin(0) + C = C \implies C = 0$$
hence,
$$\II(\a) = \pi \arcsin(\a) \implies \boxed{\II \left( \frac 1 2 \right) = \pi \arcsin \left( \frac 1 2 \right) = \frac{\pi^2}{6}}$$