Find $$\int_{-\pi/2}^{\pi/2}\frac{\log(1+b\sin x)}{\sin x}\,\mathrm dx$$given that $|b|<1$.
I split the integral into$$I=\int_0^{\pi/2}f(x)\,\mathrm dx+\int_{-\pi/2}^0f(x)\,\mathrm dx$$ For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=\int_{0} ^{\pi / 2} \frac{\log \frac{1 + b \sin x}{1- b \sin x}}{\sin x}\,\mathrm dx$$
I do not know how to proceed further. The answer is $\pi \arcsin b$.