Trying to find another way to answer this question, I arrived at a point where I cannot simplify anymore.
The solution being $$I_1=\int_0^{\frac \pi 2}\csc (x) \log \left(\frac{1+b \sin (x)}{1-b \sin (x)}\right)=\pi \sin ^{-1}(b)$$
I am stuck with $$I_2=\frac 12\Bigg[a_+ \Phi \left(a_+^2,2,\frac{1}{2}\right)+a_- \Phi \left(a_-^2,2,\frac{1}{2}\right)\Bigg]\quad \text{where}\quad a_\pm=b\pm\sqrt{b^2-1}$$ $\Phi(.)$ being the Lerch transcendent function.
How to prove that, for $\color{red}{-1 \le b \le 1}$, $\color{red}{I_2=I_1}$ ?