I want to show that $$ \frac{1}{ \sqrt{ 2 \pi}} \int_{-\infty}^{\infty} \frac{e^{-iwx}}{\cosh{ (x \sqrt{\frac{\pi}{2}}} ) } = \frac{1}{\cosh{ (w \sqrt{\frac{\pi}{2}}} ) } .$$
My attempt is to first make a substitution $y = x \sqrt{ \frac{\pi}{2} }$, and write $\cosh$ as exponentials which yeilds
$$ \frac{1}{ \sqrt{ 2 \pi}} \int_{-\infty}^{\infty} \frac{e^{-iwx}}{\cosh{ (x \sqrt{\frac{\pi}{2}}} ) }dx = \frac{2}{ \pi} \int_{-\infty}^{\infty} \frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{e^{y} + e^{-y} }dy = \frac{2}{ \pi} \int_{-\infty}^{\infty} e^{-y}\frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{1 - (-e^{-2y}) }dy$$ Now I can write it as a convergent geometric series
$$\frac{2}{ \pi} \int_{-\infty}^{\infty} e^{-y}\frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{1 - (-e^{-2y}) }dy = \frac{2}{ \pi} \int_{-\infty}^{\infty} \sum_{k = 0}^{\infty} -e^{-2yk} e^{-y}e^{-iwy\sqrt{\frac{2}{\pi}}}dy$$ $$ = \frac{2}{ \pi} \sum_{k = 0}^{\infty}\int_{-\infty}^{\infty} -e^{-y(2k+1+iw\sqrt{\frac{2}{\pi}})}dy$$
However this integral diverges. Does anyone have any hint on what to do next, or another strategy to show this?
Since this would mean that $\frac{1}{\cosh( x \sqrt{\frac{\pi}{2}})}$ would be an eigenfunctions of the Fourier transforms, should you be able to write it as a linear combination of gaussians?
Thanks!
$\textbf{Added:}$ So before writing it as a geometric series, I split the integration in two parts $$\frac{2}{ \pi} \int_{-\infty}^{\infty} \frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{e^{y} + e^{-y} }dy = \frac{2}{ \pi} \int_{0}^{\infty} e^{-y}\frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{1 - (-e^{-2y}) }dy + \frac{2}{ \pi} \int_{-\infty}^{0} e^{y}\frac{e^{-iwy\sqrt{\frac{2}{\pi}}}}{1 - (-e^{2y}) }dy$$ $$= \frac{2}{ \pi} \sum_{k = 0}^{\infty}\int_{0}^{\infty} (-1)^k e^{-y(2k+1+iw\sqrt{\frac{2}{\pi}})}dy + \frac{2}{ \pi} \sum_{k = 0}^{\infty}\int_{-\infty}^{0} (-1)^k e^{y(2k+1-iw\sqrt{\frac{2}{\pi}})}dy$$ $$ = \frac{4}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{ 2k+1 }{ (2k+1)^2 + (w \sqrt{\frac{2}{\pi}} )^2} $$
Now in a previous exercise I proved this identity: $$ \frac{\cosh(a( \pi -x))}{\sinh(a \pi)} = \frac{1}{a \pi} + \frac{2}{\pi} \sum_{n = 1}^{\infty}\frac{a}{a^2+n^2}\cos(nx). $$ for $ 0 \leq x \leq \pi$, which look very similar with $x = \pi$. However I'm not sure how to proceed.