Let $f(x) = e^{-a |x|}, a > 0$. Show that $$ \frac{\cosh(a( \pi -x))}{\sinh(a \pi)} = \frac{1}{a \pi} + \frac{2}{\pi} \sum_{n = 1}^{\infty}\frac{a}{a^2+n^2}\cos(nx). $$ for $ 0 \leq x \leq \pi$.
So the idea is to use Poissons summation formula $$\sum_{n = - \infty}^{\infty} f(x+n) = \sum_{n = - \infty}^{\infty} \widehat{f}(x) e^{2 \pi i n x}.$$
I managed to show that $$\sum_{n = - \infty}^{\infty} \widehat{f}(x) e^{2 \pi i n x} = \frac{1}{a \pi} + \frac{2}{\pi} \sum_{n = 1}^{\infty}\frac{a}{a^2+n^2}\cos(nx),$$
however to show that $$\sum_{n = - \infty}^{\infty} f(x+n) = \frac{\cosh(a( \pi -x))}{\sinh(a \pi)}$$ I find more tricky.
$$\sum_{n = - \infty}^{\infty} f(x+n) = \sum_{n = - \infty}^{\infty} e^{a |x+n|} $$ Now I would like to split the sum in two parts, but since $ 0 \leq x \leq \pi$, I consider $f(\frac{x}{\pi} + n)$ in order to get $$\sum_{n = - \infty}^{\infty} f(\frac{x}{\pi}+n) = \sum_{n = 0}^{\infty}e^{-a(\frac{x}{\pi} + n)} + \sum_{n = 1}^{\infty}e^{a(\frac{x}{\pi} - n)} = \frac{\cosh(a( \frac{\pi}{2} -\frac{x}{\pi}))}{\sinh(\frac{a \pi}{2})}$$ Now substituting back $x \rightarrow \pi x$ gives me $$\frac{\cosh(a( \frac{\pi}{2} -{x}))}{\sinh(\frac{a \pi}{2})} \neq \frac{\cosh(a( \pi -x))}{\sinh(a \pi)}$$
can someone see what I'm doing wrong?
Thanks