5

I am trying to solve this improper integral: $\int_{0}^{\infty} x^{-x} \,dx$.

First I replace de infinity by a another variable $y$, so: $\int_{0}^{y} x^{-x} \,dx = \int_{0}^{y} e^{\ln(x^{-x})}\,dx = \int_{0}^{y} e^{-x\ln(x)}\,dx = \int_{0}^{y} \sum_{n=0}^{\infty} \frac{(-x\ln(x))^{n}}{n!}\,dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{y} (x\ln(x))^n\, dx$.

Solving $\int (x\ln(x))^n\,dx$:

  1. Substitute $u=\ln(x) \implies \int u^ne^{(n+1)n}\,du $
  2. Substitute $v=u^{n+1} \implies \frac{1}{n+1}\int e^{(n+1)v^{\frac{1}{n+1}}}\,dv$
  3. Substitute $w=(n+1)^{(n+1)}v \implies \int e^{(n+1)v^{\frac{1}{n+1}}}\,dv = (n+1)^{-n-1}\int e^{w^{\frac{1}{n+1}}}\,dw$
  4. $\int e^{w^{\frac{1}{n+1}}}\,dw = -(n+1)(-1)^n \operatorname{\Gamma}(n+1,-w^{\frac{1}{n+1}})$
  5. Undo substitutions, $\int (x\ln(x))^n\,dx = \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(x\right)\right)}{\left(-1\right)^n}$
  6. $\int_{0}^{y} (x\ln(x))^n\, dx \implies \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(x\right)\right)}{\left(-1\right)^n} \Big|_0^y$, when $x=0$, the incomplete gamma function will be evalueate between plus infinity and plus infinity so, $\int_{0}^{y} (x\ln(x))^n\, dx = \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(y\right)\right)}{\left(-1\right)^n}$
  7. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{y} (x\ln(x))^n\, dx = \sum_{n=0}^{\infty} \frac{\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(y\right)\right)}{n!(n+1)^{n+1}} = \sum_{n=1}^{\infty}\frac{Q\left(n,\ -n\ln\left(y\right)\right)}{n^n}$.

Where $Q$ is the normalized or regularized incomplete gamma function

But what's happen when $y \to \infty$? The incomplete gamma function will be evaluated between zero and minus infinity, is it valid? Is there another way to find this value? Because de the improper integral converges.

2 Answers2

3

See this answer/my question:

Area under $x^{-x}$ over its real domain. What is another non-integral form of $$\int_{\Bbb R^+}x^{-x}dx$$?

In summary, here are the results:

$$\int_{\Bbb R^+}x^{-x}dx =\\ \lim_{x\to \infty}\sum_{n\ge1}\frac{Q(n,-nx)}{n^n}= \\\lim_{b,n\to \infty}\frac bn \\\sum_{k=0}^n\left(\frac{bk}{n}\right)^{-\left(\frac{bk}{n}\right)}=\\ \sum_{n\ge1}n^{-n}-\lim_{x\to\infty}\sum_{n\ge1}(-x)^n\ _1\mathrm{\tilde F}_1(n,n+1,nx) =\\ \sum_{n\ge 1}n^{-n}-\lim_{x\to \infty}\sum_{n\ge1}\sum_{k\ge1}\frac{(-x)^n(nx)^k}{(k+n)k!n!}= \\\lim_{x\to \infty}\sum_{n\ge 1}\sum_{k=0}^{n-1}\frac{(-1)^k e^{nx} n^{k-n}x^k}{k!}$$

Here is proof of the main result and @Nikos Bagis’s representation:

$$\int^{\infty}_{0}\frac{1}{t^t}\textrm{d}t=\sum_{n\geq 1}\frac{1}{n^n}-1+\int^{1}_{0}\frac{1}{t^{t^{t^{ \ldots}}}}\textrm{d}t $$

Where appears the $\,_1 \mathrm {\tilde F}_1(a,b,z) $ Confluent Regularized Hypergeometric function , Regularized Incomplete Gamma function $Q(a,z)$, and infinite tetration

Let’s see if we can use @Rounak Sarkar’s method from here to find a sum only answer.

Let me work on this to actually get some new results.

If you want here is a Mellin Transform representation:

$$\int_0^\infty x^{a-1-x}dx=\int_0^\infty x^{a-1}x^{-x} dx\implies \int_0^\infty x^{-x}dx=\mathcal{M}\{ x^{-x}\}(1)$$

I do not use Ramunajun’s Master Theorem much, but let’s try it:

$$\mathcal{M}\{f(x)\}(s)=\Gamma(s) y(-s), f(x)=\sum_{n=0}^\infty \frac{(-1)^n y(n)x^n}{n!} $$

So we need to find the “alternating” Exponential Generating function for $x^{-x}$

According to this theorem, then:

$$\int_0^\infty x^{-x} dx=\mathcal{M}\{ x^{-x}\}(1) =y(-1),x^{-x}=\sum_{n=0}^\infty\frac{(-1)^n y(n) x^n}{n!}$$

So how do we find $y(n)$?

Here is how to find $y(n)$: The coefficients are just a Taylor series for $x^{-x}$ at $x=1$ which is just OEIS A176118

Therefore: $y(n)=(-1)^n \text A176118(n)$

And experimentally:

$$\int_0^\infty x^{-x} dx \mathop=^\text{natural}_\text{extension}-\text A176118(-1) $$

But this is stretching the definition. Maybe we can use an nth derivative formula to find a closed form for the nth derivative? Please correct me and give me feedback!

Тyma Gaidash
  • 12,081
  • Thanks, for me the most strange thing is if you see the graph of the partial sum, the amplitude of series diverges when x goes to infinity. (Correct me if I am wrong) The sum comes from infinity to minus infinity and in the end, it converges to a value. My question is: is it correct? – Guilherme Namen Dec 16 '21 at 12:02
  • Though the partial sums do alternate and even become absurdly large in magnitude, the answer does indeed converge. You just need an infinite number of terms in the series in order for it to converge in the first place. If this is unsatisfying, one should note the following: – Arjun Vyavaharkar Dec 16 '21 at 19:54
  • 1
    The function $\dfrac{2}{x^2}$ is strictly greater than $\dfrac{1}{x^x}$ on the interval $(0,\infty)$. Since we know that $\int_0^1 \dfrac{1}{x^x} \textrm{d}x$ is finite, if we want to check if $\int_1^\infty \dfrac{1}{x} \textrm{d}x$ is finite, then we must check whether $\int_1^\infty \dfrac{2}{x^2} \textrm{d}x$ is finite. If it is, then since $\int_1^\infty \dfrac{2}{x^2} \textrm{d}x$ is strictly greater than $\int_1^\infty \dfrac{1}{x^x} \textrm{d}x$, we may conclude that $\int_1^\infty \dfrac{1}{x^x} \textrm{d}x$ is finite, and thus so is $\int_0^\infty \dfrac{1}{x^x} \textrm{d}x$. – Arjun Vyavaharkar Dec 16 '21 at 20:00
  • 1
    In any case, $\int_1^\infty \dfrac{2}{x^2} \textrm{d}x = 2$, hence $\int_1^\infty \dfrac{1}{x^x} \textrm{d}x < 2$. Sorry for the sloppy "proof," but I think it's ample justification that the integral is not infinite. Hope this helped! – Arjun Vyavaharkar Dec 16 '21 at 20:02
  • 1
    @ArjunVyavaharkar Thanks. Your proof would make a great answer. – Тyma Gaidash Dec 16 '21 at 21:42
  • It seems like the partial sums must be much larger than the value of $x$ in $Q(n,-n x)$ – Тyma Gaidash Dec 16 '21 at 22:06
  • The question remains, the series of infinity values could converge, only because it could be derived from an improper converge integral? – Guilherme Namen Dec 17 '21 at 15:14
  • Technically yes. Although a series can be defined as the limit of a sum when the limit goes to infinity, the limit and the actual answer don't always agree. For example, if you were to add every natural number in an infinite series, the limit would blow up to infinity, even though the series itself is equal to $-\dfrac{1}{12}$. The same thing applies in this scenario: The $\limsup$ goes to $+\infty$ while the $\liminf$ goes to $-\infty$. However, the series itself nicely converges to $~1.995...$ – Arjun Vyavaharkar Dec 18 '21 at 00:53
  • 1
    @Tyma Gaidash Excellent answer btw! Just a few minor tweaks to make the expressions a bit less fuzzy. – Arjun Vyavaharkar Dec 18 '21 at 00:58
  • @ArjunVyavaharkar All that was done is a previous question, but thanks for the edits and comment. – Тyma Gaidash Dec 18 '21 at 01:21
  • The problem is that sum is a sum of infinity values, not finite numbers. – Guilherme Namen Dec 18 '21 at 19:01
  • Well, it's the same problem as $\infty-\infty$: It's in indeterminate form. However, that doesn't necessarily mean we can't calculate the sum, because we can, although doing so would require a limit so that we don't have to handle the difference between two infinite quantities. – Arjun Vyavaharkar Dec 18 '21 at 19:33
  • @ArjunVyavaharkar Do you think Ramanujan’s Master theorem can be used? It is in the answer, but the generating function is not found. Thanks. – Тyma Gaidash Dec 19 '21 at 13:26
  • @TymaGaidash could you recomend me a good book for study Ramunajun’s Master Theorem? – Guilherme Namen Dec 21 '21 at 14:22
  • I was think if we decompose $Q$ function and interchange the sum and integral it will be $\int_{-\infty}^{\infty} e^{-x} \sum_{n=0}^{\infty} \frac{x^n}{n!(n+1)^{(n+1)}}dx$, but $\sum_{n=0}^{\infty} \frac{x^n}{n!(n+1)^{(n+1)}}$ is what function? – Guilherme Namen Dec 21 '21 at 18:47
  • @Tyma Gaidash Sadly no, I'm not sure if RMT would be appropriate. However, if you find anything, please let us know! – Arjun Vyavaharkar Dec 21 '21 at 19:21
  • You could potentially use Feynman's technique to parameterize the integral and solve for a class of integrals instead. – Arjun Vyavaharkar Dec 21 '21 at 19:23
  • I trying to use Lambert W function because $-\frac{W(-x)}{x} = \sum_{n=0}^{\infty} \frac{ (n+1)^nx^n}{(n+1)!} $ but no success. – Guilherme Namen Dec 21 '21 at 19:43
  • @GuilhermeNamen I have also tried finding closed forms here and a few other posts, but no luck. I recommend the wikipedia link in the answer for the Master Theorem since I am new to the formula, so I do not know many books on it, but maybe try finding a copy of Ramanujan’s notes? – Тyma Gaidash Dec 21 '21 at 21:53
  • @TymaGaidash, thanks. My best guess is it could be some special Lambert $W$ function. We need to try some transformation of this function to create a Taylor expansion to fit this series. – Guilherme Namen Dec 22 '21 at 11:01
  • This is an old answer – Тyma Gaidash Feb 17 '24 at 00:51
2

Using the known identities $$\int\limits_0^1\ln^n z\,\text dz = (-1)^n n!,\tag1$$ $$\sum\limits_{j=0}^k \dfrac{a^m}{m!}=e^a\, \dfrac{\Gamma(k+1,a)}{\Gamma(k+1)},\tag2$$ one can get $$I_1(a)=\int\limits_0^a x^{-x}\text dx = a \int\limits_0^1 (ay)^{-ay} \text dy = a\int\limits_0^1 e^{-ay\ln a} e^{-ay\ln y}\text dy$$ $$= \sum\limits_{m=0}^\infty \dfrac{\ln^m a}{m!}\sum\limits_{n=0}^\infty (-1)^{m+n} \dfrac {a^{m+n+1}}{n!}\int\limits_0^1 y^{m+n}\ln^n y\,\text dy$$ $$= \sum\limits_{m=0}^\infty \dfrac{\ln^m a}{m!}\sum\limits_{n=0}^\infty (-1)^{m+n} \dfrac {a^{m+n+1}}{n!(m+n+1)^{n+1}}\int\limits_0^1 \ln^n (y^{m+n+1})\,\text dy^{m+n+1}$$ $$= \sum\limits_{m=0}^\infty \dfrac{\ln^m a}{m!}\sum\limits_{n=0}^\infty (-1)^{m+n} \dfrac {a^{m+n+1}}{n!(m+n+1)^{n+1}}\cdot(-1)^n n!$$ $$= \sum\limits_{m=0}^\infty (-1)^m\dfrac{\ln^m a}{m!}\sum\limits_{n=1}^\infty \dfrac {a^{m+n}}{(m+n)^n} = \sum\limits_{s=1}^\infty \dfrac{a^s}{s^s}\sum\limits_{m=0}^{s-1} \dfrac{(-s\ln a)^m}{m!}$$ $$I_1(a)= \sum\limits_{s=1}^\infty \dfrac{\Gamma(s,-s \ln a)}{s^s\Gamma(s)}.\tag3$$

On the other hand,

$$I_2(a)=\int\limits_a^\infty x^{-x}\text dx = a \int\limits_0^\infty (a(1+y))^{-a-ay}\text dy = a^{1-a}\int\limits_0^\infty \dfrac{a^{-ay}}{(1+y)^a} (1+y)^{-ay}\,\text dy.$$ Let $\;z=a^{-ay} = e^{-(a\ln a)y},\;$ then $\;y=-\dfrac{\ln z}{a\ln a},\;$ $$(1+y)^{-ay}=\left(1-\dfrac{\log_a z}a\right)^{\log_a z} =1 - \dfrac{(z-1)^2}{a\ln^2a}+\dfrac{(z-1)^3(2a\ln a-1)}{2a^2\ln^3a} +\dots =\dfrac{(2a^2 \ln^3a-4a\ln a+1) + z(10a\ln a-3) + z^2 (3-8a\ln a) + z^3(2a\ln a-1)}{2a^2\ln^3 a}+\dots,$$

Taking in account the integral $$\int\limits_0^\infty\dfrac{a^{-kay}}{(1+y)^a} \,\text dy =a^{ka}\operatorname E_a(ka\ln a),\tag4$$ one can get $$\begin{align} &I_2(a)\approx \dfrac1{2a\ln^3 a}\big((2a^2\ln^3a-4a\ln a+1) E_a(a\ln a) + a^a(10a\ln a-3) E_a(2 a\ln a)\\[4pt] & - a^{2a}(8\ln a-3) E_a(3a\ln a) + a^{3a}(2a\ln a-1) E_a(4a\ln a)\big). \end{align}\tag5$$ Approximation $(5)$ is not too accurate (accuracy $\;1.5\%\;$ for $\;a=e^2\;$), because only three terms of the primary series was used. However, it shows the effectiveness of the used approach.

If $\;a=e^3,\;$ then $I_1(a)\approx 1.99545\,59575\,00138\,00041\,87246\,96764\,22,$

$I_2(a)\approx 1.69475\cdot10^{-27},$

$\;I_1(a)+I_2(a)\approx 1.99545\,59575\,00138\,00041\,87246\,98458\,97.$

Numeric value is $I=1.99545\,59575\,00138\,00041\,87246\,98452\,72.$

Easily to see that the second integral increases the result accuracy.

$\color{green}{\mathbf{Edition\ of\ 23.12.21.}}$

The alternative way is

$$I_2(a)=\int\limits_a^\infty x^{-x}\text dx = a \int\limits_0^\infty (a(1+y))^{-a-ay}\text dy = a^{1-a}\int\limits_0^\infty a^{-ay}(1+y)^{-a-ay}\,\text dy.$$ Let $\;z=a^{-ay} = e^{-(a\ln a)y},\;$ then $\;y=-\dfrac{\ln z}{a\ln a},\;$ $$I_2(a)= \dfrac1{a^a\ln a}\int\limits_0^1 \left(1-\dfrac{\log_a z}a\right)^{-a+\log_a z}\text dz =\sum\limits_{n=0}^\infty c_n\ln^n z,$$ $$I_2(a) = \sum\limits_{n=0}^\infty (-1)^n n! c_n,\tag6$$ where $$\sum\limits_{n=0}^\infty c_n y^n = \dfrac 1{a^a\ln a} \left(1-\dfrac y{a \ln a}\right)^{\large-a+\frac y{\ln a}}.\tag7$$

By the direct numeric calculations, $$I_2(e^3)\approx 1.68850\,13010\,68575\,08677\,67860\,60236\,26323\,88582\cdot10^{-27}.$$ Calculations by $(6)-(7)$ by $20$-term model give $$I_2(e^3)\approx 1.68850\,13010\,38888\,76584\cdot 10^{-27},$$ i.e. ten additional correct digits of the result.