I am trying to solve this improper integral: $\int_{0}^{\infty} x^{-x} \,dx$.
First I replace de infinity by a another variable $y$, so: $\int_{0}^{y} x^{-x} \,dx = \int_{0}^{y} e^{\ln(x^{-x})}\,dx = \int_{0}^{y} e^{-x\ln(x)}\,dx = \int_{0}^{y} \sum_{n=0}^{\infty} \frac{(-x\ln(x))^{n}}{n!}\,dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{y} (x\ln(x))^n\, dx$.
Solving $\int (x\ln(x))^n\,dx$:
- Substitute $u=\ln(x) \implies \int u^ne^{(n+1)n}\,du $
- Substitute $v=u^{n+1} \implies \frac{1}{n+1}\int e^{(n+1)v^{\frac{1}{n+1}}}\,dv$
- Substitute $w=(n+1)^{(n+1)}v \implies \int e^{(n+1)v^{\frac{1}{n+1}}}\,dv = (n+1)^{-n-1}\int e^{w^{\frac{1}{n+1}}}\,dw$
- $\int e^{w^{\frac{1}{n+1}}}\,dw = -(n+1)(-1)^n \operatorname{\Gamma}(n+1,-w^{\frac{1}{n+1}})$
- Undo substitutions, $\int (x\ln(x))^n\,dx = \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(x\right)\right)}{\left(-1\right)^n}$
- $\int_{0}^{y} (x\ln(x))^n\, dx \implies \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(x\right)\right)}{\left(-1\right)^n} \Big|_0^y$, when $x=0$, the incomplete gamma function will be evalueate between plus infinity and plus infinity so, $\int_{0}^{y} (x\ln(x))^n\, dx = \dfrac{\left(n+1\right)^{-n-1}\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(y\right)\right)}{\left(-1\right)^n}$
- $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{y} (x\ln(x))^n\, dx = \sum_{n=0}^{\infty} \frac{\operatorname{\Gamma}\left(n+1,-\left(n+1\right)\ln\left(y\right)\right)}{n!(n+1)^{n+1}} = \sum_{n=1}^{\infty}\frac{Q\left(n,\ -n\ln\left(y\right)\right)}{n^n}$.
Where $Q$ is the normalized or regularized incomplete gamma function
But what's happen when $y \to \infty$? The incomplete gamma function will be evaluated between zero and minus infinity, is it valid? Is there another way to find this value? Because de the improper integral converges.
Though the video shows it how to solve the integral from 0 to 1 but the way would be same
– p_square Dec 20 '21 at 17:08