Just for fun, we can in fact solve a more general problem without too much more effort. Define the function $\mathcal{I}:\mathbb{R}_{>0}^{2}\rightarrow\mathbb{R}$ via the parametric integral
$$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{\infty}\mathrm{d}x\,\frac{\arctan{\left(ax\right)}\operatorname{arccot}{\left(bx\right)}}{1+x^{2}},$$
where here the arctangent and arccotangent functions are defined respectively by
$$\arctan{\left(z\right)}=\int_{0}^{z}\mathrm{d}x\,\frac{1}{1+x^{2}};~~~\small{z\in\mathbb{R}},$$
$$\operatorname{arccot}{\left(z\right)}=\int_{z}^{\infty}\mathrm{d}x\,\frac{1}{1+x^{2}};~~~\small{z\in\mathbb{R}}.$$
Then, given fixed but arbitrary $\left(a,b\right)\in\mathbb{R}_{>0}^{2}$, we find
$$\begin{align}
\mathcal{I}{\left(a,b\right)}
&=\int_{0}^{\infty}\mathrm{d}x\,\frac{\arctan{\left(ax\right)}\operatorname{arccot}{\left(bx\right)}}{1+x^{2}}\\
&=\int_{0}^{\infty}\mathrm{d}x\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{x^{2}}{\left(1+x^{2}\right)\left(1+x^{2}t^{2}\right)\left(1+x^{2}u^{2}\right)}\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\int_{0}^{\infty}\mathrm{d}x\,\frac{x^{2}}{\left(1+x^{2}\right)\left(1+x^{2}t^{2}\right)\left(1+x^{2}u^{2}\right)}\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\int_{0}^{\infty}\mathrm{d}y\,\frac{y^{2}}{\left(y^{2}+1\right)\left(y^{2}+t^{2}\right)\left(y^{2}+u^{2}\right)};~~~\small{\left[x=\frac{1}{y}\right]}\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{1}{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)}\\
&~~~~~\times\int_{0}^{\infty}\mathrm{d}y\,\frac{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)y^{2}}{\left(y^{2}+1\right)\left(y^{2}+t^{2}\right)\left(y^{2}+u^{2}\right)}\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{1}{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)}\\
&~~~~~\times\int_{0}^{\infty}\mathrm{d}y\,\left[\frac{\left(1-u^{2}\right)t^{2}}{\left(y^{2}+t^{2}\right)}-\frac{\left(1-t^{2}\right)u^{2}}{\left(y^{2}+u^{2}\right)}-\frac{\left(t^{2}-u^{2}\right)}{\left(y^{2}+1\right)}\right]\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{1}{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)}\\
&~~~~~\times\left[\int_{0}^{\infty}\mathrm{d}y\,\frac{\left(1-u^{2}\right)t^{2}}{\left(y^{2}+t^{2}\right)}-\int_{0}^{\infty}\mathrm{d}y\,\frac{\left(1-t^{2}\right)u^{2}}{\left(y^{2}+u^{2}\right)}-\int_{0}^{\infty}\mathrm{d}y\,\frac{\left(t^{2}-u^{2}\right)}{\left(y^{2}+1\right)}\right]\\
&=\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{1}{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)}\\
&~~~~~\times\left[\left(1-u^{2}\right)t\frac{\pi}{2}-\left(1-t^{2}\right)u\frac{\pi}{2}-\left(t^{2}-u^{2}\right)\frac{\pi}{2}\right]\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{\left(1-t\right)\left(1-u\right)\left(t-u\right)}{\left(1-t^{2}\right)\left(1-u^{2}\right)\left(t^{2}-u^{2}\right)}\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\int_{b}^{\infty}\mathrm{d}u\,\frac{1}{\left(1+t\right)\left(1+u\right)\left(t+u\right)}\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\,\frac{1}{\left(1-t^{2}\right)}\int_{b}^{\infty}\mathrm{d}u\,\frac{\left(1-t\right)}{\left(1+u\right)\left(t+u\right)}\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\,\frac{1}{1-t^{2}}\int_{b}^{\infty}\mathrm{d}u\,\left[\frac{1}{\left(t+u\right)}-\frac{1}{\left(1+u\right)}\right]\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\,\frac{1}{1-t^{2}}\int_{b}^{\infty}\mathrm{d}u\,\frac{d}{du}\left[\ln{\left(t+u\right)}-\ln{\left(1+u\right)}\right]\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\,\frac{1}{1-t^{2}}\int_{b}^{\infty}\mathrm{d}u\,\frac{d}{du}\ln{\left(\frac{t+u}{1+u}\right)}\\
&=\frac{\pi}{2}\int_{0}^{a}\mathrm{d}t\,\frac{1}{1-t^{2}}\left[-\ln{\left(\frac{t+b}{1+b}\right)}\right]\\
&=-\frac{\pi}{4}\int_{\frac{1-a}{1+a}}^{1}\mathrm{d}u\,\frac{1}{u}\ln{\left(\frac{\left(\frac{1-u}{1+u}\right)+b}{1+b}\right)};~~~\small{\left[t=\frac{1-u}{1+u}\right]}\\
&=\frac{\pi}{4}\int_{p}^{1}\mathrm{d}u\,\frac{1}{u}\ln{\left(\frac{1+u}{1-qu}\right)};~~~\small{\left[p:=\frac{1-a}{1+a}\land q:=\frac{1-b}{1+b}\right]}\\
&=\frac{\pi}{4}\int_{p}^{1}\mathrm{d}u\,\left[-\frac{\ln{\left(1-qu\right)}}{u}+\frac{\ln{\left(1+u\right)}}{u}\right]\\
&=\frac{\pi}{4}\int_{p}^{1}\mathrm{d}u\,\frac{d}{du}\left[\operatorname{Li}_{2}{\left(qu\right)}-\operatorname{Li}_{2}{\left(-u\right)}\right]\\
&=\frac{\pi}{4}\left[-\operatorname{Li}_{2}{\left(-1\right)}+\operatorname{Li}_{2}{\left(-p\right)}+\operatorname{Li}_{2}{\left(q\right)}-\operatorname{Li}_{2}{\left(pq\right)}\right]\\
&=\frac{\pi}{4}\left[\frac{\pi^{2}}{12}+\operatorname{Li}_{2}{\left(-\frac{1-a}{1+a}\right)}+\operatorname{Li}_{2}{\left(\frac{1-b}{1+b}\right)}-\operatorname{Li}_{2}{\left(\frac{1-a}{1+a}\cdot\frac{1-b}{1+b}\right)}\right].\blacksquare\\
\end{align}$$